BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34055483)

  • 1. Osteology, relationships and functional morphology of
    Pritchard AC; Sues HD; Scott D; Reisz RR
    PeerJ; 2021; 9():e11413. PubMed ID: 34055483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida.
    Pritchard AC; Nesbitt SJ
    R Soc Open Sci; 2017 Oct; 4(10):170499. PubMed ID: 29134065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The femora of Drepanosauromorpha (Reptilia: Diapsida): Implications for the functional evolution of the thigh of Sauropsida.
    Pritchard AC; Irmis RB; Olori JC; Nesbitt SJ; Smith ND; Stocker MR; Turner AH
    Anat Rec (Hoboken); 2023 Aug; 306(8):2102-2118. PubMed ID: 36847780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To glide or to swim? A reinvestigation of the enigmatic
    Bastiaans D; Buffa V; Scheyer TM
    R Soc Open Sci; 2023 Nov; 10(11):231171. PubMed ID: 38026014
    [No Abstract]   [Full Text] [Related]  

  • 5. Anatomy of the Enigmatic Reptile Elachistosuchus huenei Janensch, 1949 (Reptilia: Diapsida) from the Upper Triassic of Germany and Its Relevance for the Origin of Sauria.
    Sobral G; Sues HD; Müller J
    PLoS One; 2015; 10(9):e0135114. PubMed ID: 26352985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling.
    Hill RV
    Syst Biol; 2005 Aug; 54(4):530-47. PubMed ID: 16085573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence.
    Ezcurra MD; Scheyer TM; Butler RJ
    PLoS One; 2014; 9(2):e89165. PubMed ID: 24586565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-description of the early Triassic diapsid Palacrodon from the lower Fremouw formation of Antarctica.
    Jenkins KM; Meyer DL; Lewis PJ; Choiniere JN; Bhullar BS
    J Anat; 2022 Dec; 241(6):1441-1458. PubMed ID: 36168715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms.
    Ezcurra MD
    PeerJ; 2016; 4():e1778. PubMed ID: 27162705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay.
    Ezcurra MD; Velozo P; Meneghel M; Piñeiro G
    PeerJ; 2015; 3():e776. PubMed ID: 25737816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The redescription of the holotype of
    Klein N; Eggmaier S; Hagdorn H
    PeerJ; 2022; 10():e13818. PubMed ID: 36046504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intriguing new diapsid reptile with evidence of mandibulo-dental pathology from the early Permian of Oklahoma revealed by neutron tomography.
    Mooney ED; Maho T; Bevitt JJ; Reisz RR
    PLoS One; 2022; 17(11):e0276772. PubMed ID: 36449456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new Early Permian reptile and its significance in early diapsid evolution.
    Reisz RR; Modesto SP; Scott DM
    Proc Biol Sci; 2011 Dec; 278(1725):3731-7. PubMed ID: 21525061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An armoured marine reptile from the Early Triassic of South China and its phylogenetic and evolutionary implications.
    Wolniewicz AS; Shen Y; Li Q; Sun Y; Qiao Y; Chen Y; Hu YW; Liu J
    Elife; 2023 Aug; 12():. PubMed ID: 37551884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The osteology of Shuvosaurus inexpectatus, a shuvosaurid pseudosuchian from the Upper Triassic Post Quarry, Dockum Group of Texas, USA.
    Nesbitt SJ; Chatterjee S
    Anat Rec (Hoboken); 2024 Apr; 307(4):1175-1238. PubMed ID: 38258540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new sphenodontian (Diapsida: Lepidosauria) from the Upper Triassic (Norian) of Germany and its implications for the mode of sphenodontian evolution.
    Freisem LS; Müller J; Sues HD; Sobral G
    BMC Ecol Evol; 2024 Mar; 24(1):35. PubMed ID: 38493125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The osteology and phylogenetic position of the loricatan (Archosauria: Pseudosuchia)
    Nesbitt SJ; Zawiskie JM; Dawley RM
    PeerJ; 2020; 8():e10101. PubMed ID: 33194383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new archosauriform (Reptilia: Diapsida) from the Manda beds (Middle Triassic) of southwestern Tanzania.
    Nesbitt SJ; Butler RJ; Gower DJ
    PLoS One; 2013; 8(9):e72753. PubMed ID: 24086264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tiny Triassic saurian from Connecticut and the early evolution of the diapsid feeding apparatus.
    Pritchard AC; Gauthier JA; Hanson M; Bever GS; Bhullar BS
    Nat Commun; 2018 Mar; 9(1):1213. PubMed ID: 29572441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diverse diapsid tooth assemblage from the Early Triassic (Driefontein locality, South Africa) records the recovery of diapsids following the end-Permian mass extinction.
    Hoffman DK; Hancox JP; Nesbitt SJ
    PLoS One; 2023; 18(5):e0285111. PubMed ID: 37126508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.