These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 34055664)
1. Comparative Proteomics Analysis for Elucidating the Interaction Between Host Cells and Sun H; Li J; Wang L; Yin K; Xu C; Liu G; Xiao T; Huang B; Wei Q; Gong M; Cao J Front Cell Infect Microbiol; 2021; 11():643001. PubMed ID: 34055664 [No Abstract] [Full Text] [Related]
2. Armed and dangerous: Toxoplasma gondii uses an arsenal of secretory proteins to infect host cells. Carruthers VB Parasitol Int; 1999 Mar; 48(1):1-10. PubMed ID: 11269320 [TBL] [Abstract][Full Text] [Related]
3. Global proteomic profiling of multiple organs of cats (Felis catus) and proteome-transcriptome correlation during acute Toxoplasma gondii infection. Nie LB; Cong W; He JJ; Zheng WB; Zhu XQ Infect Dis Poverty; 2022 Sep; 11(1):96. PubMed ID: 36104766 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii. Kawase O; Nishikawa Y; Bannai H; Zhang H; Zhang G; Jin S; Lee EG; Xuan X Proteomics; 2007 Oct; 7(20):3718-25. PubMed ID: 17880006 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. Bradley PJ; Ward C; Cheng SJ; Alexander DL; Coller S; Coombs GH; Dunn JD; Ferguson DJ; Sanderson SJ; Wastling JM; Boothroyd JC J Biol Chem; 2005 Oct; 280(40):34245-58. PubMed ID: 16002398 [TBL] [Abstract][Full Text] [Related]
7. A Member of the Ferlin Calcium Sensor Family Is Essential for Toxoplasma gondii Rhoptry Secretion. Coleman BI; Saha S; Sato S; Engelberg K; Ferguson DJP; Coppens I; Lodoen MB; Gubbels MJ mBio; 2018 Oct; 9(5):. PubMed ID: 30279285 [TBL] [Abstract][Full Text] [Related]
8. Profiling of myristoylation in Broncel M; Dominicus C; Vigetti L; Nofal SD; Bartlett EJ; Touquet B; Hunt A; Wallbank BA; Federico S; Matthews S; Young JC; Tate EW; Tardieux I; Treeck M Elife; 2020 Jul; 9():. PubMed ID: 32618271 [TBL] [Abstract][Full Text] [Related]
9. Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation. Zhou CX; Zhu XQ; Elsheikha HM; He S; Li Q; Zhou DH; Suo X J Proteomics; 2016 Oct; 148():12-9. PubMed ID: 27422377 [TBL] [Abstract][Full Text] [Related]
10. A proteomic analysis unravels novel CORVET and HOPS proteins involved in Toxoplasma gondii secretory organelles biogenesis. Morlon-Guyot J; El Hajj H; Martin K; Fois A; Carrillo A; Berry L; Burchmore R; Meissner M; Lebrun M; Daher W Cell Microbiol; 2018 Nov; 20(11):e12870. PubMed ID: 29911335 [TBL] [Abstract][Full Text] [Related]
11. The Toxoplasma gondii Rhoptry Kinome Is Essential for Chronic Infection. Fox BA; Rommereim LM; Guevara RB; Falla A; Hortua Triana MA; Sun Y; Bzik DJ mBio; 2016 May; 7(3):. PubMed ID: 27165797 [TBL] [Abstract][Full Text] [Related]
12. Toxoplasma gondii ROP17 inhibits the innate immune response of HEK293T cells to promote its survival. Li JX; He JJ; Elsheikha HM; Chen D; Zhai BT; Zhu XQ; Yan HK Parasitol Res; 2019 Mar; 118(3):783-792. PubMed ID: 30675671 [TBL] [Abstract][Full Text] [Related]
13. Conditional knock-down of a novel coccidian protein leads to the formation of aberrant apical organelles and abrogates mature rhoptry positioning in Toxoplasma gondii. Morlon-Guyot J; Berry L; Sauquet I; Singh Pall G; El Hajj H; Meissner M; Daher W Mol Biochem Parasitol; 2018 Jul; 223():19-30. PubMed ID: 29958928 [TBL] [Abstract][Full Text] [Related]
14. In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii. Chen Z; Harb OS; Roos DS PLoS One; 2008; 3(10):e3611. PubMed ID: 18974850 [TBL] [Abstract][Full Text] [Related]
16. Microarray analysis of long non-coding RNA expression profiles uncovers a Toxoplasma-induced negative regulation of host immune signaling. Liu W; Huang L; Wei Q; Zhang Y; Zhang S; Zhang W; Cai L; Liang S Parasit Vectors; 2018 Mar; 11(1):174. PubMed ID: 29530077 [TBL] [Abstract][Full Text] [Related]
17. Temporal transcriptomic changes in long non-coding RNAs and messenger RNAs involved in the host immune and metabolic response during Toxoplasma gondii lytic cycle. Wang SS; Zhou CX; Elsheikha HM; He JJ; Zou FC; Zheng WB; Zhu XQ; Zhao GH Parasit Vectors; 2022 Jan; 15(1):22. PubMed ID: 35012632 [TBL] [Abstract][Full Text] [Related]
18. The Toxoplasma gondii dense granule protein GRA7 is phosphorylated upon invasion and forms an unexpected association with the rhoptry proteins ROP2 and ROP4. Dunn JD; Ravindran S; Kim SK; Boothroyd JC Infect Immun; 2008 Dec; 76(12):5853-61. PubMed ID: 18809661 [TBL] [Abstract][Full Text] [Related]
19. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. Venugopal K; Chehade S; Werkmeister E; Barois N; Periz J; Lafont F; Tardieux I; Khalife J; Langsley G; Meissner M; Marion S PLoS Pathog; 2020 May; 16(5):e1008106. PubMed ID: 32463830 [TBL] [Abstract][Full Text] [Related]
20. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection. Yang J; Du F; Zhou X; Wang L; Li S; Fang R; Zhao J Parasitol Res; 2018 Aug; 117(8):2623-2633. PubMed ID: 29948204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]