These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34055766)

  • 1. Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review.
    Guastaferro M; Reverchon E; Baldino L
    Front Bioeng Biotechnol; 2021; 9():688477. PubMed ID: 34055766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polysaccharide-Based Aerogel Production for Biomedical Applications: A Comparative Review.
    Guastaferro M; Reverchon E; Baldino L
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alginate-based hybrid aerogel microparticles for mucosal drug delivery.
    Gonçalves VS; Gurikov P; Poejo J; Matias AA; Heinrich S; Duarte CM; Smirnova I
    Eur J Pharm Biopharm; 2016 Oct; 107():160-70. PubMed ID: 27393563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics.
    Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, drying process and medical application of polysaccharide-based aerogels.
    El-Naggar ME; Othman SI; Allam AA; Morsy OM
    Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO
    Guastaferro M; Baldino L; Reverchon E; Cardea S
    Gels; 2021 Nov; 7(4):. PubMed ID: 34842697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Nanofibrous Structure in Biopolymer Aerogel during Supercritical CO
    Takeshita S; Sadeghpour A; Malfait WJ; Konishi A; Otake K; Yoda S
    Biomacromolecules; 2019 May; 20(5):2051-2057. PubMed ID: 30908038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying.
    Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP
    J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Biopolymer Aerogels Using Green Solvents.
    Subrahmanyam R; Gurikov P; Meissner I; Smirnova I
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles.
    Obaidat RM; Tashtoush BM; Bayan MF; Al Bustami RT; Alnaief M
    AAPS PharmSciTech; 2015 Dec; 16(6):1235-44. PubMed ID: 25761387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook.
    Muhammad A; Lee D; Shin Y; Park J
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the properties of porous chitosan: Aerogels and cryogels.
    Chartier C; Buwalda S; Van Den Berghe H; Nottelet B; Budtova T
    Int J Biol Macromol; 2022 Mar; 202():215-223. PubMed ID: 35033531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers.
    Veronovski A; Tkalec G; Knez Ž; Novak Z
    Carbohydr Polym; 2014 Nov; 113():272-8. PubMed ID: 25256485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow Particles Obtained by Prilling and Supercritical Drying as a Potential Conformable Dressing for Chronic Wounds.
    Sellitto MR; Amante C; Aquino RP; Russo P; Rodríguez-Dorado R; Neagu M; García-González CA; Adami R; Del Gaudio P
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin.
    López-Iglesias C; Barros J; Ardao I; Gurikov P; Monteiro FJ; Smirnova I; Alvarez-Lorenzo C; García-González CA
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 32013071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel alginate-chitosan aerogel fibres for potential wound healing applications.
    Batista MP; Gonçalves VSS; Gaspar FB; Nogueira ID; Matias AA; Gurikov P
    Int J Biol Macromol; 2020 Aug; 156():773-782. PubMed ID: 32302631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review on the Production of Polysaccharide Aerogel Particles.
    Ganesan K; Budtova T; Ratke L; Gurikov P; Baudron V; Preibisch I; Niemeyer P; Smirnova I; Milow B
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30384442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the microstructure of chitosan aerogel beads prepared by supercritical CO
    Li CG; Dang Q; Yang Q; Chen D; Zhu H; Chen J; Liu R; Wang X
    RSC Adv; 2022 Jul; 12(33):21041-21049. PubMed ID: 35919839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-Based Aerogels in Energy Storage Systems.
    Mandić V; Bafti A; Panžić I; Radovanović-Perić F
    Gels; 2024 Jun; 10(7):. PubMed ID: 39057461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.