These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34056190)

  • 1. Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame.
    Xie X; Zheng S; Sui R; Luo Z; Liu S; Consalvi JL
    ACS Omega; 2021 Apr; 6(15):10371-10382. PubMed ID: 34056190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Hydrogen Addition on Soot Formation and Emission in Acetylene Laminar Diffusion Flame.
    Wang M; Qian X; Suo Y; Ye Y; Li G; Zhang Z
    ACS Omega; 2023 Jul; 8(28):24893-24900. PubMed ID: 37483231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame.
    Cain J; Laskin A; Kholghy MR; Thomson MJ; Wang H
    Phys Chem Chem Phys; 2014 Dec; 16(47):25862-75. PubMed ID: 25354231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flame experiments at the advanced light source: new insights into soot formation processes.
    Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of the effect of CO
    An X; Cai W; Yang Y; Zheng S; Lu Q
    RSC Adv; 2023 Mar; 13(12):8173-8181. PubMed ID: 36922945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of PAH and soot precursors in benzene flames by addition of ethanol.
    Golea D; Rezgui Y; Guemini M; Hamdane S
    J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames.
    Gleason K; Gomez A
    J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of gas-phase interactions of phosphorus compounds with co-flow diffusion flames.
    Takahashi F; Katta VR; Linteris GT; Babushok VI
    Proc Combust Inst; 2019; 37():. PubMed ID: 31579396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator.
    Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R
    Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the effect of iron on PM10 formation and design of a particle-generating system using a cocentric diffusion burner flame.
    Yang G
    J Air Waste Manag Assoc; 2004 Aug; 54(8):898-907. PubMed ID: 15373357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.
    Wang J; Richter H; Howard JB; Levendis YA; Carlson J
    Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring.
    Kislov VV; Sadovnikov AI; Mebel AM
    J Phys Chem A; 2013 Jun; 117(23):4794-816. PubMed ID: 23672431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure effect on soot formation in turbulent diffusion flames.
    Roditcheva OV; Bai XS
    Chemosphere; 2001; 42(5-7):811-21. PubMed ID: 11219707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame.
    Wu H; Hu Z; Dong X; Zhang S; Cao Z; Lin SL
    ACS Omega; 2021 Jun; 6(23):15156-15167. PubMed ID: 34151095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soot Morphology and Nanostructure in Complex Flame Flow Patterns via Secondary Particle Surface Growth.
    Davis J; Tiwari K; Novosselov I
    Fuel (Lond); 2019 Jun; 245():447-457. PubMed ID: 31736504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the effect of C
    Ruan S; Shi Y; Qin C; Xu K; He C; Zhang L
    Phys Chem Chem Phys; 2023 Jun; 25(24):16550-16558. PubMed ID: 37309216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different ammonia energy ratio on soot formation and oxidation in an ammonia diesel dual-fuel engine.
    Wang X; Shi T; Jin S; Shi M; Lin J; Wu B
    Sci Total Environ; 2024 Jun; 946():174096. PubMed ID: 38906287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence on the formation of dimers of polycyclic aromatic hydrocarbons in a laminar diffusion flame.
    Faccinetto A; Irimiea C; Minutolo P; Commodo M; D'Anna A; Nuns N; Carpentier Y; Pirim C; Desgroux P; Focsa C; Mercier X
    Commun Chem; 2020 Aug; 3(1):112. PubMed ID: 36703341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.