These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34056286)
1. Prediction Model for Coal Spontaneous Combustion Based on SA-SVM. Deng J; Chen W; Wang C; Wang W ACS Omega; 2021 May; 6(17):11307-11318. PubMed ID: 34056286 [TBL] [Abstract][Full Text] [Related]
2. Optimized neural network to predict the experimental minimum period of coal spontaneous combustion. Xiao Y; Cao Y; Zhong KQ; Yin L; Deng J Environ Sci Pollut Res Int; 2022 Apr; 29(19):28070-28082. PubMed ID: 34984622 [TBL] [Abstract][Full Text] [Related]
3. Prediction Model of Coal Gas Permeability Based on Improved DBO Optimized BP Neural Network. Wang W; Cui X; Qi Y; Xue K; Liang R; Bai C Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732979 [TBL] [Abstract][Full Text] [Related]
4. An improved least squares SVM with adaptive PSO for the prediction of coal spontaneous combustion. Zhang Q; Li HG Math Biosci Eng; 2019 Apr; 16(4):3169-3182. PubMed ID: 31137256 [TBL] [Abstract][Full Text] [Related]
5. Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM. Zhu J; Yang L; Wang X; Zheng H; Gu M; Li S; Fang X Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36232168 [TBL] [Abstract][Full Text] [Related]
6. Modeling mercury speciation in combustion flue gases using support vector machine: prediction and evaluation. Zhao B; Zhang Z; Jin J; Pan WP J Hazard Mater; 2010 Feb; 174(1-3):244-50. PubMed ID: 19786321 [TBL] [Abstract][Full Text] [Related]
7. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Kong B; Li Z; Yang Y; Liu Z; Yan D Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728 [TBL] [Abstract][Full Text] [Related]
8. Study on the application of coal spontaneous combustion positive pressure beam tube classification monitoring and early warning. Kong B; Niu S; Cao H; Lu W; Wen J; Yin J; Zhang W; Zhang X Environ Sci Pollut Res Int; 2023 Jun; 30(30):75735-75751. PubMed ID: 37222889 [TBL] [Abstract][Full Text] [Related]
9. Investigation on preventive inerting approach of coal spontaneous combustion in gob considering adsorption effect. Fang X; Tan B; Wang H; Wang F; Shao ZZ; Xu C; Zheng S Environ Sci Pollut Res Int; 2023 Nov; 30(52):112892-112907. PubMed ID: 37840082 [TBL] [Abstract][Full Text] [Related]
10. Continuous monitoring system of gob temperature and its application. Qin Y; Yan L; Liu W; Xu H; Song Y; Guo W Environ Sci Pollut Res Int; 2022 Jul; 29(35):53063-53075. PubMed ID: 35279753 [TBL] [Abstract][Full Text] [Related]
11. A novel combined intelligent algorithm prediction model for the risk of the coal and gas outburst. Wang Z; Xu J; Ma J; Cai Z Sci Rep; 2023 Sep; 13(1):15988. PubMed ID: 37749215 [TBL] [Abstract][Full Text] [Related]
12. Study on Multipoint and Zoning Coordinated Prevention of Gas and Coal Spontaneous Combustion in Highly Gassy and Spontaneous Combustion-Prone Coal Seam. Zhang C; Jiao D; Zhang M; Huang G ACS Omega; 2022 May; 7(20):17305-17329. PubMed ID: 35647430 [TBL] [Abstract][Full Text] [Related]
13. Development of a Graded Early Warning Index System and Identification of Critical Temperatures for Coal Spontaneous Combustion Using Composite Gas Characteristics. Zhou Q; Mao X; Jia B ACS Omega; 2024 Aug; 9(33):35515-35525. PubMed ID: 39184523 [TBL] [Abstract][Full Text] [Related]
14. Measurement and Numerical Simulation of Coal Spontaneous Combustion in Goaf under Y-type Ventilation Mode. Gui X; Xue H; Zhan X; Hu Z; Song X ACS Omega; 2022 Mar; 7(11):9406-9421. PubMed ID: 35350356 [TBL] [Abstract][Full Text] [Related]
15. Meticulous Graded and Early Warning System of Coal Spontaneous Combustion Based on Index Gases and Characteristic Temperature. Guo J; Quan Y; Cai G; Jin Y; Zheng X; Liu Y ACS Omega; 2023 Feb; 8(7):6801-6812. PubMed ID: 36844506 [TBL] [Abstract][Full Text] [Related]
16. Prediction model of spontaneous combustion risk of extraction borehole based on PSO-BPNN and its application. Wang W; Liang R; Qi Y; Cui X; Liu J Sci Rep; 2024 Jan; 14(1):5. PubMed ID: 38168106 [TBL] [Abstract][Full Text] [Related]
17. Dynamic distribution and prevention of spontaneous combustion of coal in gob-side entry retaining goaf. Hu D; Li Z PLoS One; 2022; 17(5):e0267631. PubMed ID: 35622814 [TBL] [Abstract][Full Text] [Related]
18. A Safety Warning Model Based on IAHA-SVM for Coal Mine Environment. Li Z; Feng F Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514908 [TBL] [Abstract][Full Text] [Related]
19. Risk assessment of coal mine water inrush based on PCA-DBN. Zhang Y; Tang S; Shi K Sci Rep; 2022 Jan; 12(1):1370. PubMed ID: 35079120 [TBL] [Abstract][Full Text] [Related]
20. Oxidation and spontaneous combustion characteristics of particulate coal under stress-heat-gas interactions. Chao J; Wei S; Shen L; Han X; Pan R; Li J; Liu S; Hu D Sci Total Environ; 2024 Oct; 947():174567. PubMed ID: 38981542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]