These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34056286)
21. Prediction of spontaneous combustion susceptibility of coal seams based on coal intrinsic properties using various machine learning tools. Shukla US; Mishra DP; Mishra A Environ Sci Pollut Res Int; 2023 Jun; 30(26):69564-69579. PubMed ID: 37140867 [TBL] [Abstract][Full Text] [Related]
22. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees. Nie B; Yan H; Liu P; Chen Z; Peng C; Wang X; Yin F; Gong J; Wei Y; Lin S; Gao Q; Cao M Environ Sci Pollut Res Int; 2023 Jan; 30(3):8269-8279. PubMed ID: 36053423 [TBL] [Abstract][Full Text] [Related]
23. Classification of coal bursting liability of some chinese coals using machine learning methods. Wang C; Liu Y; Li Y; Liu X; Wang Q Sci Rep; 2024 Jun; 14(1):14030. PubMed ID: 38890360 [TBL] [Abstract][Full Text] [Related]
24. Research on complex air leakage method to prevent coal spontaneous combustion in longwall goaf. Wang K; Tang H; Wang F; Miao Y; Liu D PLoS One; 2019; 14(3):e0213101. PubMed ID: 30822333 [TBL] [Abstract][Full Text] [Related]
25. Influence of High Sulfate Mine Water on Spontaneous Combustion of Coal. Liu Y; Zhao W; Zhang Y; Wang J; He M; Yang M; Hou X ACS Omega; 2022 Dec; 7(50):46347-46357. PubMed ID: 36570196 [TBL] [Abstract][Full Text] [Related]
26. Data on analysis of temperature inversion during spontaneous combustion of coal. Guo J; Wen H; Liu Y; Jin Y Data Brief; 2019 Aug; 25():104304. PubMed ID: 31440550 [TBL] [Abstract][Full Text] [Related]
27. Predicting permeability changes with injecting CO Yan H; Zhang J; Rahman SS; Zhou N; Suo Y Sci Total Environ; 2020 Feb; 705():135941. PubMed ID: 31838426 [TBL] [Abstract][Full Text] [Related]
28. Thermodynamic Characteristics of Oxidation and Combustion of Coal under Lean-Oxygen Conditions. Wang H; Li J; Chen X; Fan C; Wang P; Hu L ACS Omega; 2021 Jul; 6(27):17255-17266. PubMed ID: 34278112 [TBL] [Abstract][Full Text] [Related]
29. Study on Nitrogen Injection Fire Prevention and Extinguishing Technology in Spontaneous Combustion Gob Based on Gob-Side Entry Retaining. Zhou X; Jing Z; Li Y; Bai G ACS Omega; 2023 Aug; 8(33):30569-30577. PubMed ID: 37636922 [TBL] [Abstract][Full Text] [Related]
30. Application of hybrid artificial intelligence model to predict coal strength alteration during CO Yan H; Zhang J; Zhou N; Li M Sci Total Environ; 2020 Apr; 711():135029. PubMed ID: 31812377 [TBL] [Abstract][Full Text] [Related]
31. Combination of minimum enclosing balls classifier with SVM in coal-rock recognition. Song Q; Jiang H; Song Q; Zhao X; Wu X PLoS One; 2017; 12(9):e0184834. PubMed ID: 28937987 [TBL] [Abstract][Full Text] [Related]
32. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application. Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762 [TBL] [Abstract][Full Text] [Related]
33. Research on the Gas Emission Quantity Prediction Model of Improved Artificial Bee Colony Algorithm and Weighted Least Squares Support Vector Machine (IABC-WLSSVM). Wang L; Li J; Zhang W; Li Y Appl Bionics Biomech; 2022; 2022():4792988. PubMed ID: 35087603 [TBL] [Abstract][Full Text] [Related]
34. Influence of air supply on coal spontaneous combustion during support withdrawal in fully mechanized coal mining and its prevention. Zhang X; Zhou X; Bai G; Wang C Sci Rep; 2021 Sep; 11(1):19330. PubMed ID: 34588534 [TBL] [Abstract][Full Text] [Related]
35. [Rapid Coal Classification Based on Confidence Machine and Near Infrared Spectroscopy]. Wang YS; Yang M; Luo ZY; Wang Y; Li G; Hu RF Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1685-9. PubMed ID: 30052372 [TBL] [Abstract][Full Text] [Related]
36. [Near infrared spectroscopy quantitative analysis model based on incremental neural network with partial least squares]. Cao H; Li DH; Liu L; Zhou Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2799-803. PubMed ID: 25739228 [TBL] [Abstract][Full Text] [Related]
37. Prediction of HPC compressive strength based on machine learning. Jin L; Duan J; Jin Y; Xue P; Zhou P Sci Rep; 2024 Jul; 14(1):16776. PubMed ID: 39039187 [TBL] [Abstract][Full Text] [Related]
38. A study on the prediction method of coal spontaneous combustion development period based on critical temperature. Qu L Environ Sci Pollut Res Int; 2018 Dec; 25(35):35748-35760. PubMed ID: 30357672 [TBL] [Abstract][Full Text] [Related]
39. Early Warning of Gas Concentration in Coal Mines Production Based on Probability Density Machine. Cai Y; Wu S; Zhou M; Gao S; Yu H Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502619 [TBL] [Abstract][Full Text] [Related]
40. Support Vector Machine for Regional Ionospheric Delay Modeling. Zhang Z; Pan S; Gao C; Zhao T; Gao W Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277391 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]