These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34056404)

  • 21. Sulfur-Decorated Hyper-Cross-Linked Coal Tar: A Microporous Organic Polymer for Efficient and Expeditious Mercury Removal.
    Ramezani MS; Ozdemir J; Khosropour AR; Beyzavi H
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44117-44124. PubMed ID: 32930561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raoult's law-based method for determination of coal tar average molecular weight.
    Brown DG; Gupta L; Moo-Young HK; Coleman AJ
    Environ Toxicol Chem; 2005 Aug; 24(8):1886-92. PubMed ID: 16152957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data on the sulfur-containing polycyclic aromatic compounds of high-sulfur coal of SW China.
    Zhao Q; Qin S; Zhao C; Sun Y; Panchal B; Chang X
    Data Brief; 2021 Aug; 37():107218. PubMed ID: 34195306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of Pyrolysis and Mild Oxidation Characteristics of Tar-Rich Coal via Thermogravimetric Experiments.
    Ma L; Mao Q; Wang C; Duan Z; Chen M; Yang F; Liu J; Wang Z; Che D
    ACS Omega; 2022 Jul; 7(29):25613-25624. PubMed ID: 35910123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.
    Shemwell BE; Ergut A; Levendis YA
    J Air Waste Manag Assoc; 2002 May; 52(5):521-34. PubMed ID: 12022692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of heterocylic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: A review.
    Blum P; Sagner A; Tiehm A; Martus P; Wendel T; Grathwohl P
    J Contam Hydrol; 2011 Nov; 126(3-4):181-94. PubMed ID: 22115084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rebound of a coal tar creosote plume following partial source zone treatment with permanganate.
    Thomson NR; Fraser MJ; Lamarche C; Barker JF; Forsey SP
    J Contam Hydrol; 2008 Nov; 102(1-2):154-71. PubMed ID: 18757111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrolytic Modification of Heavy Coal Tar by Multi-Polymer Blending: Preparation of Ordered Carbonaceous Mesophase.
    Zhang L; Liu C; Jia Y; Mu Y; Yan Y; Huang P
    Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of high-molecular-weight sulfur-containing aromatics in vacuum residues using Fourier transform ion cyclotron resonance mass spectrometry.
    Müller H; Andersson JT; Schrader W
    Anal Chem; 2005 Apr; 77(8):2536-43. PubMed ID: 15828790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on dielectric properties of high organic sulfur coking coal and modeling sulfur compounds.
    Cai C; Ge T; Zhang M
    PLoS One; 2019; 14(1):e0208125. PubMed ID: 30605468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarius.
    Kargi F; Robinson JM
    Biotechnol Bioeng; 1985 Jan; 27(1):41-9. PubMed ID: 18553575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Distribution and sources of oxygen and sulfur heterocyclic aromatic compounds in surface soil of Beijing, China].
    He GX; Zhang ZH; Peng XY; Zhu L; Lu L
    Huan Jing Ke Xue; 2011 Nov; 32(11):3284-93. PubMed ID: 22295625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring the synthesis of new pitches from coal tar and its fractions by chromatography and related techniques.
    Bermejo J; Fernández AL; Prada V; Granda M; Menéndez R
    J Chromatogr A; 1999 Jul; 849(2):507-19. PubMed ID: 10457446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of coal tar pitch and smoke extract components and their cytotoxicity on human bronchial epithelial cells.
    Li Z; Wu Y; Zhao Y; Wang L; Zhu H; Qin L; Feng F; Wang W; Wu Y
    J Hazard Mater; 2011 Feb; 186(2-3):1277-82. PubMed ID: 21194834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of Sulfur Compounds from Coal by the Thermophilic Organism Sulfolobus acidocaldarius.
    Kargi F; Robinson JM
    Appl Environ Microbiol; 1982 Oct; 44(4):878-83. PubMed ID: 16346112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of sulfur forms and transformation during the co-combustion of sewage sludge and coal using X-ray photoelectron spectroscopy.
    Li PS; Hu Y; Yu W; Yue YN; Xu Q; Hu S; Hu NS; Yang J
    J Hazard Mater; 2009 Aug; 167(1-3):1126-32. PubMed ID: 19278780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic Conversion of a ≥ 200 °C Fraction Separated from Low-Temperature Coal Tar into Light Aromatic Hydrocarbons.
    Yao Q; Liu Y; Zhang D; Sun M; Ma X
    ACS Omega; 2021 Feb; 6(5):4062-4073. PubMed ID: 33585781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.
    Etemadzadeh SS; Emtiazi G; Etemadifar Z
    Curr Microbiol; 2016 Jun; 72(6):707-15. PubMed ID: 26883128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of organic sulfur compounds by a coal-solubilizing fungus.
    Faison BD; Clark TM; Lewis SN; Ma CY; Sharkey DM; Woodward CA
    Appl Biochem Biotechnol; 1991; 28-29():237-51. PubMed ID: 1929365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mass ranges of coal tar pitch fractions by mass spectrometry and size-exclusion chromatography.
    Karaca F; Morgan TJ; George A; Bull ID; Herod AA; Millan M; Kandiyoti R
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):2087-98. PubMed ID: 19489019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.