These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 34056406)

  • 1. Artificial Intelligence-Guided
    Srinivasan S; Batra R; Chan H; Kamath G; Cherukara MJ; Sankaranarayanan SKRS
    ACS Omega; 2021 May; 6(19):12557-12566. PubMed ID: 34056406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using
    Choudhary S; Malik YS; Tomar S
    Front Immunol; 2020; 11():1664. PubMed ID: 32754161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Based
    Ma B; Terayama K; Matsumoto S; Isaka Y; Sasakura Y; Iwata H; Araki M; Okuno Y
    J Chem Inf Model; 2021 Jul; 61(7):3304-3313. PubMed ID: 34242036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning.
    Santana MVS; Silva-Jr FP
    BMC Chem; 2021 Feb; 15(1):8. PubMed ID: 33531083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of Therapeutic Agents for COVID-19 Using Machine Learning and Ensemble Docking Studies.
    Batra R; Chan H; Kamath G; Ramprasad R; Cherukara MJ; Sankaranarayanan SKRS
    J Phys Chem Lett; 2020 Sep; 11(17):7058-7065. PubMed ID: 32787328
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Domenico A; Nicola G; Daniela T; Fulvio C; Nicola A; Orazio N
    J Chem Inf Model; 2020 Oct; 60(10):4582-4593. PubMed ID: 32845150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2.
    Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM
    J Infect Public Health; 2021 Feb; 14(2):227-237. PubMed ID: 33493919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coevolution, Dynamics and Allostery Conspire in Shaping Cooperative Binding and Signal Transmission of the SARS-CoV-2 Spike Protein with Human Angiotensin-Converting Enzyme 2.
    Verkhivker G
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm.
    Bai Q; Tan S; Xu T; Liu H; Huang J; Yao X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32778891
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Br B; Damle H; Ganju S; Damle L
    F1000Res; 2020; 9():663. PubMed ID: 32765844
    [No Abstract]   [Full Text] [Related]  

  • 11. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.
    Cao L; Goreshnik I; Coventry B; Case JB; Miller L; Kozodoy L; Chen RE; Carter L; Walls AC; Park YJ; Strauch EM; Stewart L; Diamond MS; Veesler D; Baker D
    Science; 2020 Oct; 370(6515):426-431. PubMed ID: 32907861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs.
    Choudhury A; Mukherjee S
    J Med Virol; 2020 Oct; 92(10):2105-2113. PubMed ID: 32383269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Strategies of Antiviral Drug Discovery for COVID-19.
    Mei M; Tan X
    Front Mol Biosci; 2021; 8():671263. PubMed ID: 34055887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets.
    Allen WJ; Fochtman BC; Balius TE; Rizzo RC
    J Comput Chem; 2017 Nov; 38(30):2641-2663. PubMed ID: 28940386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the
    Al-Karmalawy AA; Dahab MA; Metwaly AM; Elhady SS; Elkaeed EB; Eissa IH; Darwish KM
    Front Chem; 2021; 9():661230. PubMed ID: 34017819
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Huang X; Pearce R; Zhang Y
    Aging (Albany NY); 2020 Jun; 12(12):11263-11276. PubMed ID: 32544884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Homologous modeling and binding ability analysis of Spike protein after point mutation of severe acute respiratory syndrome coronavirus 2 to receptor proteins and potential antiviral drugs].
    Cao Z; Wang LT; Liu ZM
    Beijing Da Xue Xue Bao Yi Xue Ban; 2020 Dec; 53(1):150-158. PubMed ID: 33550350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Binding Interface: Comparison with Experimental Evidence.
    Laurini E; Marson D; Aulic S; Fermeglia A; Pricl S
    ACS Nano; 2021 Apr; 15(4):6929-6948. PubMed ID: 33733740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dieckol and Its Derivatives as Potential Inhibitors of SARS-CoV-2 Spike Protein (UK Strain: VUI 202012/01): A Computational Study.
    Aatif M; Muteeb G; Alsultan A; Alshoaibi A; Khelif BY
    Mar Drugs; 2021 Apr; 19(5):. PubMed ID: 33922914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Alanine Scanning and Structural Analysis of the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Complex.
    Laurini E; Marson D; Aulic S; Fermeglia M; Pricl S
    ACS Nano; 2020 Sep; 14(9):11821-11830. PubMed ID: 32833435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.