These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34056435)

  • 1. A Surface Charge Approach to Investigating the Influence of Oil Contacting Clay Minerals on Wettability Alteration.
    Mohammed I; Al Shehri D; Mahmoud M; Kamal MS; Alade OS
    ACS Omega; 2021 May; 6(19):12841-12852. PubMed ID: 34056435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Native Reservoir State and Oilfield Operations on Clay Mineral Surface Chemistry.
    Mohammed I; Al Shehri D; Mahmoud M; Kamal MS; Alade O; Arif M; Patil S
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Iron Minerals in Promoting Wettability Alterations in Reservoir Formations.
    Mohammed I; Al Shehri D; Mahmoud M; Kamal MS; Alade OS
    ACS Omega; 2021 Feb; 6(5):4022-4033. PubMed ID: 33585778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of porewater ionic composition on arsenate adsorption to clay minerals.
    Fakhreddine S; Fendorf S
    Sci Total Environ; 2021 Sep; 785():147096. PubMed ID: 33932669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of organic ligands on low surface charge clay minerals: the composition in the aqueous interface region.
    Jelavić S; Stipp SLS; Bovet N
    Phys Chem Chem Phys; 2018 Jun; 20(25):17226-17233. PubMed ID: 29900457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals.
    Zhuang J; Yu GR
    Chemosphere; 2002 Nov; 49(6):619-28. PubMed ID: 12430649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition in the Interface between Clay Mineral Surfaces and Divalent Cation Electrolytes.
    Jelavić S; Nielsen AR; Stipp SLS; Bovet N
    Langmuir; 2018 Jun; 34(24):7011-7020. PubMed ID: 29792031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of polyamine on clay minerals.
    Blachier C; Michot L; Bihannic I; Barrès O; Jacquet A; Mosquet M
    J Colloid Interface Sci; 2009 Aug; 336(2):599-606. PubMed ID: 19464022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on clay wettability: From experimental investigations to molecular dynamics simulations.
    Pan B; Yin X; Iglauer S
    Adv Colloid Interface Sci; 2020 Nov; 285():102266. PubMed ID: 33011571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of typical clay minerals on aggregation and settling of pristine and aged polyethylene microplastics.
    Wang Y; Chen X; Wang F; Cheng N
    Environ Pollut; 2023 Jan; 316(Pt 2):120649. PubMed ID: 36375574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt coagulation or flocculation? In situ zeta potential study on ion correlation and slime coating with the presence of clay: A case of coal slurry aggregation.
    Li H; Chen J; Peng C; Min F; Song S
    Environ Res; 2020 Oct; 189():109875. PubMed ID: 32979991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface binding site analysis of Ca2+-homoionized clay-humic acid complexes.
    Martinez RE; Sharma P; Kappler A
    J Colloid Interface Sci; 2010 Dec; 352(2):526-34. PubMed ID: 20864115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.
    Sánchez-Martín MJ; Dorado MC; del Hoyo C; Rodríguez-Cruz MS
    J Hazard Mater; 2008 Jan; 150(1):115-23. PubMed ID: 17532126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineral Composition and Its Control on Nanopores of Marine-Continental Transitional Shale from the Ningwu Basin, North China.
    Zhang BX; Fu XH; Shen YL; Zhang QH; Deng Z
    J Nanosci Nanotechnol; 2021 Jan; 21(1):168-180. PubMed ID: 33213621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XRD and TEM analyses of a simulated leached rare earth ore deposit: Implications for clay mineral contents and structural evolution.
    Jin X; Chen L; Chen H; Zhang L; Wang W; Ji H; Deng S; Jiang L
    Ecotoxicol Environ Saf; 2021 Dec; 225():112728. PubMed ID: 34500383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrophoretic mobility of montmorillonite. Zeta potential and surface conductivity effects.
    Leroy P; Tournassat C; Bernard O; Devau N; Azaroual M
    J Colloid Interface Sci; 2015 Aug; 451():21-39. PubMed ID: 25875489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clay minerals affect the stability of surfactant-facilitated carbon nanotube suspensions.
    Han Z; Zhang F; Lin D; Xing B
    Environ Sci Technol; 2008 Sep; 42(18):6869-75. PubMed ID: 18853802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf.
    Hein JR; Dowling JS; Schuetze A; Lee HJ
    Mar Environ Res; 2003; 56(1-2):79-102. PubMed ID: 12648951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Montmorillonite, Kaolinite, or Illite in Pyrite Flotation: Differences in Clay Behavior Based on Their Structures.
    Chen L; Zhao Y; Bai H; Ai Z; Chen P; Hu Y; Song S; Komarneni S
    Langmuir; 2020 Sep; 36(36):10860-10867. PubMed ID: 32813528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of sulfonamide antimicrobial agents to clay minerals.
    Gao J; Pedersen JA
    Environ Sci Technol; 2005 Dec; 39(24):9509-16. PubMed ID: 16475329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.