These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34056554)

  • 1. Entanglement-Enhanced Water Dissociation in Bipolar Membranes with 3D Electrospun Junction and Polymeric Catalyst.
    Al-Dhubhani E; Swart H; Borneman Z; Nijmeijer K; Tedesco M; Post JW; Saakes M
    ACS Appl Energy Mater; 2021 Apr; 4(4):3724-3736. PubMed ID: 34056554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Electrospinning-Electrospraying for High-Performance Bipolar Membranes with Incorporated MCM-41 as Water Dissociation Catalysts.
    Al-Dhubhani E; Tedesco M; de Vos WM; Saakes M
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45745-45755. PubMed ID: 37729586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Impact of the Three-Dimensional Junction Thickness of Electrospun Bipolar Membranes on Electrochemical Performance.
    Al-Dhubhani E; Post JW; Duisembiyev M; Tedesco M; Saakes M
    ACS Appl Polym Mater; 2023 Apr; 5(4):2533-2541. PubMed ID: 37090423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Bipolar Membrane Development for Improved Water Dissociation.
    Chen Y; Wrubel JA; Klein WE; Kabir S; Smith WA; Neyerlin KC; Deutsch TG
    ACS Appl Polym Mater; 2020 Nov; 2(11):4559-4569. PubMed ID: 38434177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freestanding Bipolar Membranes with an Electrospun Junction for High Current Density Water Splitting.
    Powers D; Mondal AN; Yang Z; Wycisk R; Kreidler E; Pintauro PN
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36092-36104. PubMed ID: 35904491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition and Structure Progress of the Catalytic Interface Layer for Bipolar Membrane.
    Zhao D; Xu J; Sun Y; Li M; Zhong G; Hu X; Sun J; Li X; Su H; Li M; Zhang Z; Zhang Y; Zhao L; Zheng C; Sun X
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipolar Membranes Containing Iron-Based Catalysts for Efficient Water-Splitting Electrodialysis.
    Song HB; Kang MS
    Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroelectrochemical Detection of Water Dissociation in Bipolar Membranes.
    Hohenadel A; Gangrade AS; Holdcroft S
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46125-46133. PubMed ID: 34542264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipolar Membranes to Promote Formation of Tight Ice-Like Water for Efficient and Sustainable Water Splitting.
    Kim BS; Park SC; Kim DH; Moon GH; Oh JG; Jang J; Kang MS; Yoon KB; Kang YS
    Small; 2020 Oct; 16(41):e2002641. PubMed ID: 32964649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes.
    Bui JC; Digdaya I; Xiang C; Bell AT; Weber AZ
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52509-52526. PubMed ID: 33169965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights and Challenges for Applying Bipolar Membranes in Advanced Electrochemical Energy Systems.
    Blommaert MA; Aili D; Tufa RA; Li Q; Smith WA; Vermaas DA
    ACS Energy Lett; 2021 Jul; 6(7):2539-2548. PubMed ID: 34277948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vanadium Oxide Nanosheet-Infused Functionalized Polysulfone Bipolar Membrane for an Efficient Water Dissociation Reaction.
    Bhowmick S; Qureshi M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5466-5477. PubMed ID: 36688585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of Limiting and Overlimiting Currents in Bipolar Membranes.
    Pärnamäe R; Tedesco M; Wu MC; Hou CH; Hamelers HVM; Patel SK; Elimelech M; Biesheuvel PM; Porada S
    Environ Sci Technol; 2023 Jul; 57(26):9664-9674. PubMed ID: 37341475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design principles for water dissociation catalysts in high-performance bipolar membranes.
    Chen L; Xu Q; Oener SZ; Fabrizio K; Boettcher SW
    Nat Commun; 2022 Jul; 13(1):3846. PubMed ID: 35788131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodialysis Pump Based on Enhanced Water Dissociation of Bipolar Membrane.
    Sun Y; Lin S; Zhang F; Yang B
    Anal Chem; 2020 May; 92(9):6263-6268. PubMed ID: 32295341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of inorganic substances on water splitting in ion-exchange membranes; II. Optimal contents of inorganic substances in preparing bipolar membranes.
    Kang MS; Choi YJ; Moon SH
    J Colloid Interface Sci; 2004 May; 273(2):533-9. PubMed ID: 15082391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer.
    McDonald MB; Freund MS
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13790-7. PubMed ID: 25046580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Indirect Energy Consumption in AEM-Based CO
    Blommaert MA; Subramanian S; Yang K; Smith WA; Vermaas DA
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):557-563. PubMed ID: 34928594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic polyelectrolyte multilayers at the bipolar membrane interface.
    Abdu S; Sricharoen K; Wong JE; Muljadi ES; Melin T; Wessling M
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10445-55. PubMed ID: 24156301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental studies on the intermediate layer of a bipolar membrane. Part II. Effect of bovine serum albumin (BSA) on water dissociation at the interface of a bipolar membrane.
    Fu RQ; Xu TW; Yang WH; Pan ZX
    J Colloid Interface Sci; 2004 Oct; 278(2):318-24. PubMed ID: 15450450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.