BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34056776)

  • 1. Influence of a Ser111-phosphorylation on Rab1b GTPase conformational dynamics studied by advanced sampling simulations.
    Pourjafar-Dehkordi D; Zacharias M
    Proteins; 2021 Oct; 89(10):1324-1332. PubMed ID: 34056776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis.
    Luitz MP; Bomblies R; Ramcke E; Itzen A; Zacharias M
    Sci Rep; 2016 Jan; 6():19896. PubMed ID: 26818796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The putative "switch 2" domain of the Ras-related GTPase, Rab1B, plays an essential role in the interaction with Rab escort protein.
    Overmeyer JH; Wilson AL; Erdman RA; Maltese WA
    Mol Biol Cell; 1998 Jan; 9(1):223-35. PubMed ID: 9437002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of Ser111 in Rab8a Modulates Rabin8-Dependent Activation by Perturbation of Side Chain Interaction Networks.
    Pourjafar-Dehkordi D; Vieweg S; Itzen A; Zacharias M
    Biochemistry; 2019 Aug; 58(33):3546-3554. PubMed ID: 31361120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational control of small GTPases by AMPylation.
    Barthelmes K; Ramcke E; Kang HS; Sattler M; Itzen A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5772-5781. PubMed ID: 32123090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.
    Mishra SK; Kara M; Zacharias M; Koca J
    Glycobiology; 2014 Jan; 24(1):70-84. PubMed ID: 24134878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prenylation of a Rab1B mutant with altered GTPase activity is impaired in cell-free systems but not in intact mammalian cells.
    Wilson AL; Sheridan KM; Erdman RA; Maltese WA
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):1007-14. PubMed ID: 8836150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent.
    Kannan S; Zacharias M
    Proteins; 2010 Oct; 78(13):2809-19. PubMed ID: 20635348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PINK1-dependent phosphorylation of Serine111 within the SF3 motif of Rab GTPases impairs effector interactions and LRRK2-mediated phosphorylation at Threonine72.
    Vieweg S; Mulholland K; Bräuning B; Kachariya N; Lai YC; Toth R; Singh PK; Volpi I; Sattler M; Groll M; Itzen A; Muqit MMK
    Biochem J; 2020 May; 477(9):1651-1668. PubMed ID: 32227113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation.
    Langemeyer L; Nunes Bastos R; Cai Y; Itzen A; Reinisch KM; Barr FA
    Elife; 2014 Feb; 3():e01623. PubMed ID: 24520163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactive and active mutants of rab1b are not tightly integrated into target membranes.
    Weide T; Koster M; Barnekow A
    Int J Oncol; 1999 Oct; 15(4):727-36. PubMed ID: 10493955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hamiltonian replica-exchange simulations with adaptive biasing of peptide backbone and side chain dihedral angles.
    Ostermeir K; Zacharias M
    J Comput Chem; 2014 Jan; 35(2):150-8. PubMed ID: 24318649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insights into the effect of phosphorylation on Ras conformational dynamics and its interactions with cell signaling proteins.
    Wang Y; Ji D; Lei C; Chen Y; Qiu Y; Li X; Li M; Ni D; Pu J; Zhang J; Fu Q; Liu Y; Lu S
    Comput Struct Biotechnol J; 2021; 19():1184-1199. PubMed ID: 33680360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Ser392 phosphorylation on the structure and dynamics of the polybasic domain of ADP ribosylation factor nucleotide site opener protein: a molecular simulation study.
    Srinivasaraghavan K; Nacro K; Grüber G; Verma CS
    Biochemistry; 2013 Oct; 52(41):7339-49. PubMed ID: 24083777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional characterization of fast-cycling RhoF GTPase.
    Sugawara R; Ueda H; Honda R
    Biochem Biophys Res Commun; 2019 May; 513(2):522-527. PubMed ID: 30981505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of Iporin as a novel interaction partner for rab1.
    Bayer M; Fischer J; Kremerskothen J; Ossendorf E; Matanis T; Konczal M; Weide T; Barnekow A
    BMC Cell Biol; 2005 Mar; 6(1):15. PubMed ID: 15796781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of Rab1 binding sites using an ensemble of clustering methods.
    Lukman S; Nguyen MN; Sim K; Teo JC
    Proteins; 2017 May; 85(5):859-871. PubMed ID: 28120477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen.
    Levin RS; Hertz NT; Burlingame AL; Shokat KM; Mukherjee S
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):E4776-83. PubMed ID: 27482120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sampling of peptide and protein conformations using replica exchange simulations with a peptide backbone biasing-potential.
    Kannan S; Zacharias M
    Proteins; 2007 Feb; 66(3):697-706. PubMed ID: 17120231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal imaging of small GTPases activity in live cells.
    Voss S; Krüger DM; Koch O; Wu YW
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14348-14353. PubMed ID: 27911813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.