These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34057281)

  • 1. Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering.
    Allan SJ; Ellis MJ; De Bank PA
    J Biomed Mater Res A; 2021 Dec; 109(12):2471-2482. PubMed ID: 34057281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Aligned Skeletal Muscle Tissue Using Decellularized Plant-Derived Scaffolds.
    Cheng YW; Shiwarski DJ; Ball RL; Whitehead KA; Feinberg AW
    ACS Biomater Sci Eng; 2020 May; 6(5):3046-3054. PubMed ID: 33463300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering.
    Zhang Y; Zhang Z; Wang Y; Su Y; Chen M
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111070. PubMed ID: 32806237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Chicken Contractile Skeletal Muscle Structure Using Decellularized Plant Scaffolds.
    Hong TK; Do JT
    ACS Biomater Sci Eng; 2024 May; 10(5):3500-3512. PubMed ID: 38563398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.
    Wang PY; Yu HT; Tsai WB
    Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aligned skeletal muscle assembly on a biofunctionalized plant leaf scaffold.
    Yun J; Robertson S; Kim C; Suzuki M; Murphy WL; Gopalan P
    Acta Biomater; 2023 Nov; 171():327-335. PubMed ID: 37730079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional pore structure of the decellularized parsley scaffold regulates myogenic differentiation for cell cultured meat.
    Chen Z; Xiong W; Guo Y; Jin X; Wang L; Ge C; Tan W; Zhou Y
    J Food Sci; 2024 Sep; 89(9):5646-5658. PubMed ID: 39042463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration.
    Hasmad H; Yusof MR; Mohd Razi ZR; Hj Idrus RB; Chowdhury SR
    Tissue Eng Part C Methods; 2018 Jun; 24(6):368-378. PubMed ID: 29690856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering.
    Jana S; Levengood SK; Zhang M
    Adv Mater; 2016 Dec; 28(48):10588-10612. PubMed ID: 27865007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment.
    Patel A; Mukundan S; Wang W; Karumuri A; Sant V; Mukhopadhyay SM; Sant S
    Acta Biomater; 2016 Mar; 32():77-88. PubMed ID: 26768231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix.
    Jiao A; Moerk CT; Penland N; Perla M; Kim J; Smith AST; Murry CE; Kim DH
    J Biomed Mater Res A; 2018 Jun; 106(6):1543-1551. PubMed ID: 29368451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.
    Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL
    Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment.
    Carnes ME; Pins GD
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2308-2319. PubMed ID: 31967415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D biofabrication of skeletal muscle microtissues.
    Apsite I; Uribe JM; Posada AF; Rosenfeldt S; Salehi S; Ionov L
    Biofabrication; 2019 Dec; 12(1):015016. PubMed ID: 31600742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.
    Yeo M; Lee H; Kim GH
    Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications.
    Tallawi M; Dippold D; Rai R; D'Atri D; Roether JA; Schubert DW; Rosellini E; Engel FB; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():569-76. PubMed ID: 27612749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularized Bovine Skeletal Muscle Scaffolds: Structural Characterization and Preliminary Cytocompatibility Evaluation.
    de Melo LF; Almeida GHDR; Azarias FR; Carreira ACO; Astolfi-Ferreira C; Ferreira AJP; Pereira ESBM; Pomini KT; Marques de Castro MV; Silva LMD; Maria DA; Rici REG
    Cells; 2024 Apr; 13(8):. PubMed ID: 38667303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.