These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34057347)

  • 1. Dynamics of Laterality in Relation to the Predator-Prey Interaction between the Piscivorous Chub "
    Hori M; Kitamura JI; Maehata M; Takahashi S; Yasugi M
    Zoolog Sci; 2021 Jun; 38(3):231-237. PubMed ID: 34057347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Laterality in the Cuttlefish
    Lucky NS; Tandang KJL; Tumilba MB; Ihara R; Yamaoka K; Yasugi M; Hori M
    Zoolog Sci; 2022 Dec; 39(6):545-553. PubMed ID: 36495489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistence and fluctuation of lateral dimorphism in fishes.
    Nakajima M; Matsuda H; Hori M
    Am Nat; 2004 May; 163(5):692-8. PubMed ID: 15122487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predominance of cross-predation between lateral morphs in a largemouth bass and a freshwater goby.
    Yasugi M; Hori M
    Zoolog Sci; 2011 Dec; 28(12):869-74. PubMed ID: 22132783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraguild indirect effects through trophic cascades between stream-dwelling fishes.
    Katano O; Nakamura T; Yamamoto S
    J Anim Ecol; 2006 Jan; 75(1):167-75. PubMed ID: 16903054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing stomach content and faecal DNA analysis techniques to assess the feeding behaviour of largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus.
    Taguchi T; Miura Y; Krueger D; Sugiura S
    J Fish Biol; 2014 May; 84(5):1271-88. PubMed ID: 24661110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabarcoding of native and invasive species in stomach contents of Great Lakes fishes.
    Mychek-Londer JG; Chaganti SR; Heath DD
    PLoS One; 2020; 15(8):e0236077. PubMed ID: 32780731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change.
    Hebert CE; Weseloh DV; Idrissi A; Arts MT; O'Gorman R; Gorman OT; Locke B; Madenjian CP; Roseman EF
    Ecology; 2008 Apr; 89(4):891-7. PubMed ID: 18481511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular diet analysis reveals predator-prey community dynamics and environmental factors affecting predation of larval lake sturgeon Acipenser fulvescens in a natural system.
    Waraniak JM; Baker EA; Scribner KT
    J Fish Biol; 2018 Oct; 93(4):616-629. PubMed ID: 29956319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life at the top: Lake ecotype influences the foraging pattern, metabolic costs and life history of an apex fish predator.
    Cruz-Font L; Shuter BJ; Blanchfield PJ; Minns CK; Rennie MD
    J Anim Ecol; 2019 May; 88(5):702-716. PubMed ID: 30712263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of predator-prey habitat use and behavioral interactions over diel periods at sub-tropical reefs.
    Campanella F; Auster PJ; Taylor JC; Muñoz RC
    PLoS One; 2019; 14(2):e0211886. PubMed ID: 30726295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of machine learning to identify predators of stocked fish in Lake Ontario: using acoustic telemetry predation tags to inform management.
    Klinard NV; Matley JK; Ivanova SV; Larocque SM; Fisk AT; Johnson TB
    J Fish Biol; 2021 Jan; 98(1):237-250. PubMed ID: 33015862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predator species related adaptive changes in larval growth and digestive physiology.
    Jiang B; Johansson F; Stoks R; Mauersberger R; Mikolajewski DJ
    J Insect Physiol; 2019 Apr; 114():23-29. PubMed ID: 30716335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predator functional response and prey survival: direct and indirect interactions affecting a marked prey population.
    Miller DA; Grand JB; Fondell TF; Anthony M
    J Anim Ecol; 2006 Jan; 75(1):101-10. PubMed ID: 16903047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateralized behavior in the attacks of largemouth bass on Rhinogobius gobies corresponding to their morphological antisymmetry.
    Yasugi M; Hori M
    J Exp Biol; 2012 Jul; 215(Pt 14):2390-8. PubMed ID: 22723477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of disassortative mating in a Tanganyikan cichlid fish and its role in the maintenance of intrapopulation dimorphism.
    Takahashi T; Hori M
    Biol Lett; 2008 Oct; 4(5):497-9. PubMed ID: 18577501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the prevalence and strength of non-independent predator effects.
    Vance-Chalcraft HD; Soluk DA
    Oecologia; 2005 Dec; 146(3):452-60. PubMed ID: 16047196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Go big or … don't? A field-based diet evaluation of freshwater piscivore and prey fish size relationships.
    Gaeta JW; Ahrenstorff TD; Diana JS; Fetzer WW; Jones TS; Lawson ZJ; McInerny MC; Santucci VJ; Vander Zanden MJ
    PLoS One; 2018; 13(3):e0194092. PubMed ID: 29543856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A morphological and functional basis for maximum prey size in piscivorous fishes.
    Mihalitsis M; Bellwood DR
    PLoS One; 2017; 12(9):e0184679. PubMed ID: 28886161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.