These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 34057632)
41. Analyzing the mechanism of nitrous oxide production in aerobic phase of anoxic/aerobic sequential batch reactor from the perspective of key enzymes. Yang R; Yuan LJ; Wang R; He ZX; Lei L; Ma YC Environ Sci Pollut Res Int; 2022 Jun; 29(26):39877-39887. PubMed ID: 35113372 [TBL] [Abstract][Full Text] [Related]
42. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Wunderlin P; Mohn J; Joss A; Emmenegger L; Siegrist H Water Res; 2012 Mar; 46(4):1027-37. PubMed ID: 22227243 [TBL] [Abstract][Full Text] [Related]
43. Denitrifying kinetics and nitrous oxide emission under different copper concentrations. Wu G; Zhai X; Jiang C; Guan Y Water Sci Technol; 2014; 69(4):746-54. PubMed ID: 24569272 [TBL] [Abstract][Full Text] [Related]
44. High NO and N Wang S; Zhao J; Huang T Environ Sci Pollut Res Int; 2019 Nov; 26(33):34377-34387. PubMed ID: 31637614 [TBL] [Abstract][Full Text] [Related]
45. [Nitrite Accumulation Characteristics of Partial Denitrification in Different Sludge Sources Using Sodium Acetate as Carbon Source]. Bi CX; Yu DS; Du SM; Wang XX; Chen GH; Wang J; Gong XZ; Du YQ Huan Jing Ke Xue; 2019 Feb; 40(2):783-790. PubMed ID: 30628344 [TBL] [Abstract][Full Text] [Related]
46. Nitrogen Removal and N Li P; Wang Y; Zuo J; Wang R; Zhao J; Du Y Environ Sci Technol; 2017 Jan; 51(2):870-879. PubMed ID: 27481633 [TBL] [Abstract][Full Text] [Related]
47. Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors. Mannina G; Capodici M; Cosenza A; Di Trapani D; Laudicina VA; Ødegaard H J Environ Manage; 2017 Feb; 187():96-102. PubMed ID: 27886586 [TBL] [Abstract][Full Text] [Related]
48. Missing aerobic-phase nitrogen: The potential for heterotrophic reduction of autotrophically generated nitrous oxide in a sequencing batch reactor wastewater treatment system. Shiskowskii DM; Mavinic DS Environ Technol; 2005 Aug; 26(8):843-56. PubMed ID: 16128383 [TBL] [Abstract][Full Text] [Related]
49. Effect of COD/N ratio on N Velho VF; Magnus BS; Daudt GC; Xavier JA; Guimarães LB; Costa RHR Water Sci Technol; 2017 Dec; 76(11-12):3452-3460. PubMed ID: 29236023 [TBL] [Abstract][Full Text] [Related]
50. Nitrogen removal and nitrous oxide emission from a step-feeding multiple anoxic and aerobic process. Sun Y; Wang H; Wu G; Guan Y Environ Technol; 2018 Apr; 39(7):814-823. PubMed ID: 28345390 [TBL] [Abstract][Full Text] [Related]
51. Evaluating the Role of Microbial Internal Storage Turnover on Nitrous Oxide Accumulation During Denitrification. Liu Y; Peng L; Guo J; Chen X; Yuan Z; Ni BJ Sci Rep; 2015 Oct; 5():15138. PubMed ID: 26463891 [TBL] [Abstract][Full Text] [Related]
52. [Stable Nitrite Accumulation and Phosphorus Removal from High-nitrate and Municipal Wastewaters in a Combined Process of Partial Denitrification and Denitrifying Phosphorus Removal (PD-DPR)]. Wang QY; Yu DS; Zhao J; Wang XX; Yuan MF; Gong XZ; Chu GY; He TH Huan Jing Ke Xue; 2020 Mar; 41(3):1384-1392. PubMed ID: 32608640 [TBL] [Abstract][Full Text] [Related]
53. Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources. Dai Y; Yuan Z; Wang X; Oehmen A; Keller J Water Res; 2007 May; 41(9):1885-96. PubMed ID: 17368713 [TBL] [Abstract][Full Text] [Related]
54. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source. Wang D; Li X; Yang Q; Zheng W; Wu Y; Zeng T; Zeng G Water Res; 2012 Aug; 46(12):3868-78. PubMed ID: 22609408 [TBL] [Abstract][Full Text] [Related]
55. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor. Ali M; Rathnayake RMLD; Zhang L; Ishii S; Kindaichi T; Satoh H; Toyoda S; Yoshida N; Okabe S Water Res; 2016 Oct; 102():147-157. PubMed ID: 27340816 [TBL] [Abstract][Full Text] [Related]
56. Application of acidic conditions and inert-gas sparging to achieve high-efficiency nitrous oxide recovery during nitrite denitrification. Zhuge YY; Shen XY; Liu YD; Shapleigh J; Li W Water Res; 2020 Sep; 182():116001. PubMed ID: 32544733 [TBL] [Abstract][Full Text] [Related]
57. [Effect of C/N ratio on nitrous oxide production during denitrification with different electron acceptors]. Shang HL; Peng YZ; Zhang JR; Wang SY Huan Jing Ke Xue; 2009 Jul; 30(7):2007-12. PubMed ID: 19775000 [TBL] [Abstract][Full Text] [Related]
58. New insights into nitrous oxide emissions in a single-stage CANON process coupled with denitrification: thermodynamics and nitrogen transformation. Fang F; Li K; Guo JS; Wang H; Zhang P; Yan P Water Sci Technol; 2020 Jul; 82(1):157-169. PubMed ID: 32910800 [TBL] [Abstract][Full Text] [Related]
59. Influence of biofilm thickness on nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs). Eldyasti A; Nakhla G; Zhu J J Biotechnol; 2014 Dec; 192 Pt A():281-90. PubMed ID: 25450644 [TBL] [Abstract][Full Text] [Related]
60. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors. Su Q; Ma C; Domingo-Félez C; Kiil AS; Thamdrup B; Jensen MM; Smets BF Water Res; 2017 Oct; 123():429-438. PubMed ID: 28689127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]