BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34057803)

  • 1. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives.
    Pompei S; Grimm C; Schiller C; Schober L; Kroutil W
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):16906-16910. PubMed ID: 34057803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiols Act as Methyl Traps in the Biocatalytic Demethylation of Guaiacol Derivatives.
    Pompei S; Grimm C; Schiller C; Schober L; Kroutil W
    Angew Chem Weinheim Bergstr Ger; 2021 Jul; 133(31):17043-17047. PubMed ID: 38505659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-Free Regioselective Biocatalytic Demethylation of Methyl-phenyl Ethers via Methyltransfer Employing Veratrol-
    Grimm C; Lazzarotto M; Pompei S; Schichler J; Richter N; Farnberger JE; Fuchs M; Kroutil W
    ACS Catal; 2020 Sep; 10(18):10375-10380. PubMed ID: 32974079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin.
    Fetherolf MM; Levy-Booth DJ; Navas LE; Liu J; Grigg JC; Wilson A; Katahira R; Beckham GT; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25771-25778. PubMed ID: 32989155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Selective Demethylation of Aryl Methyl Ethers with a Pseudomonas Rieske Monooxygenase.
    Lanfranchi E; Trajković M; Barta K; de Vries JG; Janssen DB
    Chembiochem; 2019 Jan; 20(1):118-125. PubMed ID: 30362644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical demethylation of aryl methyl ethers using an odorless thiol reagent.
    Chae J
    Arch Pharm Res; 2008 Mar; 31(3):305-9. PubMed ID: 18409042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C3 and C6 Modification-Specific OYE Biotransformations of Synthetic Carvones and Sequential BVMO Chemoenzymatic Synthesis of Chiral Caprolactones.
    Issa IS; Toogood HS; Johannissen LO; Raftery J; Scrutton NS; Gardiner JM
    Chemistry; 2019 Feb; 25(12):2983-2988. PubMed ID: 30468546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme.
    Grimm C; Pompei S; Egger K; Fuchs M; Kroutil W
    RSC Adv; 2023 Feb; 13(9):5770-5777. PubMed ID: 36816070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of salicylic acid to catechol in Solanaceae by SA 1-hydroxylase.
    Zhou F; Last RL; Pichersky E
    Plant Physiol; 2021 Apr; 185(3):876-891. PubMed ID: 33793924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct analysis of enzyme-catalyzed DNA demethylation.
    Karkhanina AA; Mecinović J; Musheev MU; Krylova SM; Petrov AP; Hewitson KS; Flashman E; Schofield CJ; Krylov SN
    Anal Chem; 2009 Jul; 81(14):5871-5. PubMed ID: 19518090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains.
    Sharma UK; Sharma N; Salwan R; Kumar R; Kasana RC; Sinha AK
    J Sci Food Agric; 2012 Feb; 92(3):610-7. PubMed ID: 21919002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function relationships of human JmjC oxygenases-demethylases versus hydroxylases.
    Markolovic S; Leissing TM; Chowdhury R; Wilkins SE; Lu X; Schofield CJ
    Curr Opin Struct Biol; 2016 Dec; 41():62-72. PubMed ID: 27309310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The demethylation of guaiacol by a new bacterial cytochrome P-450.
    Dardas A; Gal D; Barrelle M; Sauret-Ignazi G; Sterjiades R; Pelmont J
    Arch Biochem Biophys; 1985 Feb; 236(2):585-92. PubMed ID: 3970527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
    de Gonzalo G; Mihovilovic MD; Fraaije MW
    Chembiochem; 2010 Nov; 11(16):2208-31. PubMed ID: 20936617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalamin-Dependent Apparent Intramolecular Methyl Transfer for Biocatalytic Constitutional Isomerization of Catechol Monomethyl Ethers.
    Farnberger JE; Hiebler K; Bierbaumer S; Skibar W; Zepeck F; Kroutil W
    ACS Catal; 2019 May; 9(5):3900-3905. PubMed ID: 31080689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxidation of thiols by flavoprotein oxidases: a biocatalytic route to reactive thiocarbonyls.
    Ewing TA; Dijkman WP; Vervoort JM; Fraaije MW; van Berkel WJ
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13206-9. PubMed ID: 25284255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baeyer-Villiger monooxygenases: recent advances and future challenges.
    Torres Pazmiño DE; Dudek HM; Fraaije MW
    Curr Opin Chem Biol; 2010 Apr; 14(2):138-44. PubMed ID: 20015679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase.
    Liu YY; Li CX; Xu JH; Zheng GW
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.