These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 34057817)
21. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement. Guo Q; Yuan M; Zhang L; Deng M Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069 [TBL] [Abstract][Full Text] [Related]
22. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. McKellar DW; Walter LD; Song LT; Mantri M; Wang MFZ; De Vlaminck I; Cosgrove BD Commun Biol; 2021 Nov; 4(1):1280. PubMed ID: 34773081 [TBL] [Abstract][Full Text] [Related]
23. A point cloud segmentation framework for image-based spatial transcriptomics. Defard T; Laporte H; Ayan M; Soulier J; Curras-Alonso S; Weber C; Massip F; Londoño-Vallejo JA; Fouillade C; Mueller F; Walter T Commun Biol; 2024 Jul; 7(1):823. PubMed ID: 38971915 [TBL] [Abstract][Full Text] [Related]
24. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno. Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153 [TBL] [Abstract][Full Text] [Related]
25. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing. Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371 [TBL] [Abstract][Full Text] [Related]
26. SCS: cell segmentation for high-resolution spatial transcriptomics. Chen H; Li D; Bar-Joseph Z bioRxiv; 2023 Jun; ():. PubMed ID: 37398213 [TBL] [Abstract][Full Text] [Related]
27. SCAMPR, a single-cell automated multiplex pipeline for RNA quantification and spatial mapping. Ali Marandi Ghoddousi R; Magalong VM; Kamitakahara AK; Levitt P Cell Rep Methods; 2022 Oct; 2(10):100316. PubMed ID: 36313803 [TBL] [Abstract][Full Text] [Related]
29. STellaris: a web server for accurate spatial mapping of single cells based on spatial transcriptomics data. Li X; Xiao C; Qi J; Xue W; Xu X; Mu Z; Zhang J; Li CY; Ding W Nucleic Acids Res; 2023 Jul; 51(W1):W560-W568. PubMed ID: 37224539 [TBL] [Abstract][Full Text] [Related]
30. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data. Chakrabarti A; Ni Y; Mallick BK Sci Rep; 2024 Apr; 14(1):9516. PubMed ID: 38664448 [TBL] [Abstract][Full Text] [Related]
31. Spatial Transcriptome Profiling of Mouse Hippocampal Single Cell Microzone in Parkinson's Disease. Jia E; Sheng Y; Shi H; Wang Y; Zhou Y; Liu Z; Qi T; Pan M; Bai Y; Zhao X; Ge Q Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768134 [TBL] [Abstract][Full Text] [Related]
33. Single-cell, single-nucleus and xenium-based spatial transcriptomics analyses reveal inflammatory activation and altered cell interactions in the hippocampus in mice with temporal lobe epilepsy. Liu Q; Shen C; Dai Y; Tang T; Hou C; Yang H; Wang Y; Xu J; Lu Y; Wang Y; Shan Y; Wei P; Zhao G Biomark Res; 2024 Sep; 12(1):103. PubMed ID: 39272194 [TBL] [Abstract][Full Text] [Related]
34. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses. Sun ED; Ma R; Navarro Negredo P; Brunet A; Zou J Nat Methods; 2024 Mar; 21(3):444-454. PubMed ID: 38347138 [TBL] [Abstract][Full Text] [Related]
35. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Yao Z; van Velthoven CTJ; Kunst M; Zhang M; McMillen D; Lee C; Jung W; Goldy J; Abdelhak A; Aitken M; Baker K; Baker P; Barkan E; Bertagnolli D; Bhandiwad A; Bielstein C; Bishwakarma P; Campos J; Carey D; Casper T; Chakka AB; Chakrabarty R; Chavan S; Chen M; Clark M; Close J; Crichton K; Daniel S; DiValentin P; Dolbeare T; Ellingwood L; Fiabane E; Fliss T; Gee J; Gerstenberger J; Glandon A; Gloe J; Gould J; Gray J; Guilford N; Guzman J; Hirschstein D; Ho W; Hooper M; Huang M; Hupp M; Jin K; Kroll M; Lathia K; Leon A; Li S; Long B; Madigan Z; Malloy J; Malone J; Maltzer Z; Martin N; McCue R; McGinty R; Mei N; Melchor J; Meyerdierks E; Mollenkopf T; Moonsman S; Nguyen TN; Otto S; Pham T; Rimorin C; Ruiz A; Sanchez R; Sawyer L; Shapovalova N; Shepard N; Slaughterbeck C; Sulc J; Tieu M; Torkelson A; Tung H; Valera Cuevas N; Vance S; Wadhwani K; Ward K; Levi B; Farrell C; Young R; Staats B; Wang MM; Thompson CL; Mufti S; Pagan CM; Kruse L; Dee N; Sunkin SM; Esposito L; Hawrylycz MJ; Waters J; Ng L; Smith K; Tasic B; Zhuang X; Zeng H Nature; 2023 Dec; 624(7991):317-332. PubMed ID: 38092916 [TBL] [Abstract][Full Text] [Related]
36. stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics. Shengquan C; Boheng Z; Xiaoyang C; Xuegong Z; Rui J Bioinformatics; 2021 Jul; 37(Suppl_1):i299-i307. PubMed ID: 34252941 [TBL] [Abstract][Full Text] [Related]
37. Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics. Zhong C; Tian T; Wei Z Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37944045 [TBL] [Abstract][Full Text] [Related]
38. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data. Ma Y; Liu L; Zhao Y; Hang B; Zhang Y BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049 [TBL] [Abstract][Full Text] [Related]
39. Niche-DE: niche-differential gene expression analysis in spatial transcriptomics data identifies context-dependent cell-cell interactions. Mason K; Sathe A; Hess PR; Rong J; Wu CY; Furth E; Susztak K; Levinsohn J; Ji HP; Zhang N Genome Biol; 2024 Jan; 25(1):14. PubMed ID: 38217002 [TBL] [Abstract][Full Text] [Related]