These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Evaluation of a Novel Thiol-Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells. Burchak V; Koch F; Siebler L; Haase S; Horner VK; Kempter X; Stark GB; Schepers U; Grimm A; Zimmermann S; Koltay P; Strassburg S; Finkenzeller G; Simunovic F; Lampert F Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887286 [No Abstract] [Full Text] [Related]
4. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization. Duong VT; Lin CC Macromol Biosci; 2023 Dec; 23(12):e2300213. PubMed ID: 37536347 [TBL] [Abstract][Full Text] [Related]
5. Customization of an Ultrafast Thiol-Norbornene Photo-Cross-Linkable Hyaluronic Acid-Gelatin Bioink for Extrusion-Based 3D Bioprinting. Xiao X; Yang Y; Lai Y; Huang Z; Li C; Yang S; Niu C; Yang L; Feng L Biomacromolecules; 2023 Nov; 24(11):5414-5427. PubMed ID: 37883334 [TBL] [Abstract][Full Text] [Related]
7. Norbornene-functionalized methylcellulose as a thermo- and photo-responsive bioink. Kim MH; Lin CC Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496360 [TBL] [Abstract][Full Text] [Related]
8. Optimized Photoclick (Bio)Resins for Fast Volumetric Bioprinting. Rizzo R; Ruetsche D; Liu H; Zenobi-Wong M Adv Mater; 2021 Dec; 33(49):e2102900. PubMed ID: 34611928 [TBL] [Abstract][Full Text] [Related]
9. Thiol-Gelatin-Norbornene Bioink for Laser-Based High-Definition Bioprinting. Dobos A; Van Hoorick J; Steiger W; Gruber P; Markovic M; Andriotis OG; Rohatschek A; Dubruel P; Thurner PJ; Van Vlierberghe S; Baudis S; Ovsianikov A Adv Healthc Mater; 2020 Aug; 9(15):e1900752. PubMed ID: 31347290 [TBL] [Abstract][Full Text] [Related]
10. Bottom-Up Extrusion-Based Biofabrication of the Osteoid Niche. Parmentier L; D'Haese S; Carpentier N; Dmitriev RI; Van Vlierberghe S Macromol Biosci; 2024 Apr; 24(4):e2300395. PubMed ID: 37997022 [TBL] [Abstract][Full Text] [Related]
11. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
12. Thiol-norbornene gelatin hydrogels: influence of thiolated crosslinker on network properties and high definition 3D printing. Van Hoorick J; Dobos A; Markovic M; Gheysens T; Van Damme L; Gruber P; Tytgat L; Van Erps J; Thienpont H; Dubruel P; Ovsianikov A; Van Vlierberghe S Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33176293 [TBL] [Abstract][Full Text] [Related]
13. Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation. Mũnoz Z; Shih H; Lin CC Biomater Sci; 2014 Aug; 2(8):1063-1072. PubMed ID: 32482001 [TBL] [Abstract][Full Text] [Related]
14. Optimization of hybrid gelatin-polysaccharide bioinks exploiting thiol-norbornene chemistry using a reducing additive. Carpentier N; Parmentier L; Van der Meeren L; Skirtach AG; Dubruel P; Van Vlierberghe S Biomed Mater; 2024 Feb; 19(2):. PubMed ID: 38266277 [TBL] [Abstract][Full Text] [Related]
15. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related]
16. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]