These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 34058212)

  • 21. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.
    Tiwari R; Nain L; Labrou NE; Shukla P
    Crit Rev Microbiol; 2018 Mar; 44(2):244-257. PubMed ID: 28609211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase.
    Gao D; Luan Y; Wang Q; Liang Q; Qi Q
    Microb Cell Fact; 2015 Oct; 14():159. PubMed ID: 26452465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of cellulase concoction using differential adsorption phenomenon.
    Birhade S; Pednekar M; Sagwal S; Odaneth A; Lali A
    Prep Biochem Biotechnol; 2017 May; 47(5):520-529. PubMed ID: 28045609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulase and alcohol dehydrogenase immobilized in Langmuir and Langmuir-Blodgett films and their molecular-level effects upon contact with cellulose and ethanol.
    Rodrigues D; Camilo FF; Caseli L
    Langmuir; 2014 Feb; 30(7):1855-63. PubMed ID: 24471993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal preparation of immobilized liposome-bound cellulase for hydrolysis of insoluble cellulose in an external loop airlift bioreactor.
    Yoshimoto M; Li C; Matsunaga T; Nakagawa H; Fukunaga K; Nakao K
    Biotechnol Prog; 2006; 22(2):459-64. PubMed ID: 16599563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nano-organic supports for enzyme immobilization: Scopes and perspectives.
    Zahirinejad S; Hemmati R; Homaei A; Dinari A; Hosseinkhani S; Mohammadi S; Vianello F
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111774. PubMed ID: 33932893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversible immobilization of cellulase on gelatin for efficient insoluble cellulose hydrolysis.
    Zhu X; Qiang Y; Wang X; Fan M; Lv Z; Zhou Y; He B
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):132928. PubMed ID: 38897510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulose hydrolysis by immobilized Trichoderma reesei cellulase.
    Jones PO; Vasudevan PT
    Biotechnol Lett; 2010 Jan; 32(1):103-6. PubMed ID: 19731044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermobifida fusca cellulases exhibit limited surface diffusion on bacterial micro-crystalline cellulose.
    Moran-Mirabal JM; Bolewski JC; Walker LP
    Biotechnol Bioeng; 2013 Jan; 110(1):47-56. PubMed ID: 22806563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and β-glucosidase.
    Tozakidis IE; Brossette T; Lenz F; Maas RM; Jose J
    Microb Cell Fact; 2016 Jun; 15(1):103. PubMed ID: 27287198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent trends in nanomaterials immobilised enzymes for biofuel production.
    Verma ML; Puri M; Barrow CJ
    Crit Rev Biotechnol; 2016; 36(1):108-19. PubMed ID: 25017196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme immobilization on nanomaterials for biofuel production.
    Puri M; Barrow CJ; Verma ML
    Trends Biotechnol; 2013 Apr; 31(4):215-6. PubMed ID: 23410582
    [No Abstract]   [Full Text] [Related]  

  • 33. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles.
    Samaratunga A; Kudina O; Nahar N; Zakharchenko A; Minko S; Voronov A; Pryor SW
    Appl Biochem Biotechnol; 2015 Jun; 176(4):1114-30. PubMed ID: 25935220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved immobilization of fusion proteins via cellulose-binding domains.
    Linder M; Nevanen T; Söderholm L; Bengs O; Teeri TT
    Biotechnol Bioeng; 1998 Dec; 60(5):642-7. PubMed ID: 10099473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial cellulase production using fruit wastes and its applications in biofuels production.
    Areeshi MY
    Int J Food Microbiol; 2022 Oct; 378():109814. PubMed ID: 35785680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase.
    Ogeda TL; Silva IB; Fidale LC; El Seoud OA; Petri DF
    J Biotechnol; 2012 Jan; 157(1):246-52. PubMed ID: 22146618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications.
    Dadwal A; Sharma S; Satyanarayana T
    Int J Biol Macromol; 2021 Oct; 188():226-244. PubMed ID: 34371052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis.
    Oliveira FL; de S França A; de Castro AM; Alves de Souza ROM; Esteves PM; Gonçalves RSB
    Chempluschem; 2020 Sep; 85(9):2051-2066. PubMed ID: 32909691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Dual-Responsive Materials with Reversible and Switchable Phase-Transition Properties for High-Performance Cellulose Enzymatic Hydrolysis.
    Zhu X; Tian Y; He B; Gan T; Hu X; Wang X
    ChemSusChem; 2020 Feb; 13(4):663-667. PubMed ID: 31802645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis.
    Ahmad R; Khare SK
    Bioresour Technol; 2018 Mar; 252():72-75. PubMed ID: 29306133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.