These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34058328)

  • 1. Preparation of high concentration protein powder suspensions by milling of lyophilizates.
    Marschall C; Graf G; Witt M; Hauptmeier B; Friess W
    Eur J Pharm Biopharm; 2021 Sep; 166():75-86. PubMed ID: 34058328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powder suspensions in non-aqueous vehicles for delivery of therapeutic proteins.
    Marschall C; Witt M; Hauptmeier B; Friess W
    Eur J Pharm Biopharm; 2021 Apr; 161():37-49. PubMed ID: 33548460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug Product Characterization of High Concentration Non-Aqueous Protein Powder Suspensions.
    Marschall C; Witt M; Hauptmeier B; Frieß W
    J Pharm Sci; 2023 Jan; 112(1):61-75. PubMed ID: 35779665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling.
    Desai TR; Wong JP; Hancock RE; Finlay WH
    J Pharm Sci; 2002 Feb; 91(2):482-91. PubMed ID: 11835207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.
    Gikanga B; Turok R; Hui A; Bowen M; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(1):59-73. PubMed ID: 25691715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates.
    Horn J; Schanda J; Friess W
    Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active freeze drying for production of nanocrystal-based powder: A pilot study.
    Touzet A; Pfefferlé F; der Wel PV; Lamprecht A; Pellequer Y
    Int J Pharm; 2018 Jan; 536(1):222-230. PubMed ID: 29175644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection.
    Bowen M; Armstrong N; Maa YF
    J Pharm Sci; 2012 Dec; 101(12):4433-43. PubMed ID: 23001898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of co-milling techniques for the production of high dose dry powder inhaler formulation.
    Lau M; Young PM; Traini D
    Drug Dev Ind Pharm; 2017 Aug; 43(8):1229-1238. PubMed ID: 28367654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallizing amino acids as bulking agents in freeze-drying.
    Horn J; Tolardo E; Fissore D; Friess W
    Eur J Pharm Biopharm; 2018 Nov; 132():70-82. PubMed ID: 30201570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes.
    Patel PJ; Gajera BY; Dave RH
    Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation and performance of danazol nano-crystalline suspensions and spray dried powders.
    Kumar S; Jog R; Shen J; Zolnik B; Sadrieh N; Burgess DJ
    Pharm Res; 2015 May; 32(5):1694-703. PubMed ID: 25385690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying.
    Saboti D; Maver U; Chan HK; Planinšek O
    J Pharm Sci; 2017 Jul; 106(7):1881-1888. PubMed ID: 28285981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying.
    Etzl EE; Winter G; Engert J
    Pharm Dev Technol; 2014 Mar; 19(2):213-22. PubMed ID: 23432539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro/in vivo evaluation of felodipine micropowders prepared by the wet-milling process combined with different solidification methods.
    Meng J; Li S; Yao Q; Zhang L; Weng Y; Cai C; Xu H; Tang X
    Drug Dev Ind Pharm; 2014 Jul; 40(7):929-36. PubMed ID: 23614872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulating monoclonal antibodies as powders for reconstitution at high concentration using spray drying: Models and pitfalls.
    Batens M; Massant J; Teodorescu B; Van den Mooter G
    Eur J Pharm Biopharm; 2018 Jun; 127():407-422. PubMed ID: 29499299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and dissolution performance of spray-dried naproxen nano-crystals.
    Kumar S; Shen J; Zolnik B; Sadrieh N; Burgess DJ
    Int J Pharm; 2015; 486(1-2):159-66. PubMed ID: 25814034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spray-Dried Monoclonal Antibody Suspension for High-Concentration and Low-Viscosity Subcutaneous Injection.
    Huang C; Chen L; Franzen L; Anderski J; Qian F
    Mol Pharm; 2022 May; 19(5):1505-1514. PubMed ID: 35417176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process and scaling parameters for wet media milling in early phase drug development: A knowledge based approach.
    Siewert C; Moog R; Alex R; Kretzer P; Rothenhäusler B
    Eur J Pharm Sci; 2018 Mar; 115():126-131. PubMed ID: 29278757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased dissolution and physical stability of micronized nifedipine particles encapsulated with a biocompatible polymer and surfactants in a wet ball milling process.
    Li N; DeGennaro MD; Liebenberg W; Tiedt LR; Zahr AS; Pishko MV; de Villiers MM
    Pharmazie; 2006 Jul; 61(7):595-603. PubMed ID: 16889066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.