These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34058397)
1. Accelerostat study in conventional and microfluidic bioreactors to assess the key role of residual glucose in the dimorphic transition of Yarrowia lipolytica in response to environmental stimuli. Lesage J; Timoumi A; Cenard S; Lombard E; Lee HLT; Guillouet SE; Gorret N N Biotechnol; 2021 Sep; 64():37-45. PubMed ID: 34058397 [TBL] [Abstract][Full Text] [Related]
2. Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism. Timoumi A; Bideaux C; Guillouet SE; Allouche Y; Molina-Jouve C; Fillaudeau L; Gorret N Appl Microbiol Biotechnol; 2017 Oct; 101(19):7317-7333. PubMed ID: 28879478 [TBL] [Abstract][Full Text] [Related]
3. Regulation of Yeast-to-Hyphae Transition in Yarrowia lipolytica. Pomraning KR; Bredeweg EL; Kerkhoven EJ; Barry K; Haridas S; Hundley H; LaButti K; Lipzen A; Yan M; Magnuson JK; Simmons BA; Grigoriev IV; Nielsen J; Baker SE mSphere; 2018 Dec; 3(6):. PubMed ID: 30518677 [TBL] [Abstract][Full Text] [Related]
4. The TORC1-Sch9-Rim15 signaling pathway represses yeast-to-hypha transition in response to glycerol availability in the oleaginous yeast Yarrowia lipolytica. Liang SH; Wu H; Wang RR; Wang Q; Shu T; Gao XD Mol Microbiol; 2017 May; 104(4):553-567. PubMed ID: 28188651 [TBL] [Abstract][Full Text] [Related]
5. The pH-Responsive Transcription Factors YlRim101 and Mhy1 Regulate Alkaline pH-Induced Filamentation in the Dimorphic Yeast Yarrowia lipolytica. Shu T; He XY; Chen JW; Mao YS; Gao XD mSphere; 2021 May; 6(3):. PubMed ID: 34011684 [TBL] [Abstract][Full Text] [Related]
6. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Timoumi A; Cléret M; Bideaux C; Guillouet SE; Allouche Y; Molina-Jouve C; Fillaudeau L; Gorret N Appl Microbiol Biotechnol; 2017 Jan; 101(1):351-366. PubMed ID: 27730339 [TBL] [Abstract][Full Text] [Related]
7. Morphological and Metabolic Engineering of Liu M; Zhang J; Ye J; Qi Q; Hou J ACS Synth Biol; 2021 Dec; 10(12):3551-3560. PubMed ID: 34762415 [TBL] [Abstract][Full Text] [Related]
8. Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. Braga A; Mesquita DP; Amaral AL; Ferreira EC; Belo I J Biotechnol; 2016 Jan; 217():22-30. PubMed ID: 26546055 [TBL] [Abstract][Full Text] [Related]
9. Mar1, a high mobility group box protein, regulates Kimura-Ishimaru C; Liang S; Matsuse K; Iwama R; Sato K; Watanabe N; Tezaki S; Horiuchi H; Fukuda R Appl Environ Microbiol; 2024 Aug; 90(8):e0054624. PubMed ID: 39058021 [TBL] [Abstract][Full Text] [Related]
10. Screening various Yarrowia lipolytica strains for citric acid production. Carsanba E; Papanikolaou S; Fickers P; Erten H Yeast; 2019 May; 36(5):319-327. PubMed ID: 30945772 [TBL] [Abstract][Full Text] [Related]
11. Mutation in yl-HOG1 represses the filament-to-yeast transition in the dimorphic yeast Yarrowia lipolytica. Rzechonek DA; Szczepańczyk M; Mirończuk AM Microb Cell Fact; 2023 Aug; 22(1):155. PubMed ID: 37582747 [TBL] [Abstract][Full Text] [Related]
12. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Bellou S; Makri A; Triantaphyllidou IE; Papanikolaou S; Aggelis G Microbiology (Reading); 2014 Apr; 160(Pt 4):807-817. PubMed ID: 24509502 [TBL] [Abstract][Full Text] [Related]
13. Identification of the transcription factor Znc1p, which regulates the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. Martinez-Vazquez A; Gonzalez-Hernandez A; Domínguez A; Rachubinski R; Riquelme M; Cuellar-Mata P; Guzman JC PLoS One; 2013; 8(6):e66790. PubMed ID: 23826133 [TBL] [Abstract][Full Text] [Related]
14. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
15. Yarrowia lipolytica vesicle-mediated protein transport pathways. Swennen D; Beckerich JM BMC Evol Biol; 2007 Nov; 7():219. PubMed ID: 17997821 [TBL] [Abstract][Full Text] [Related]
16. The regulatory subunit of protein kinase A promotes hyphal growth and plays an essential role in Yarrowia lipolytica. Cervantes-Chávez JA; Ruiz-Herrera J FEMS Yeast Res; 2007 Sep; 7(6):929-40. PubMed ID: 17608705 [TBL] [Abstract][Full Text] [Related]
17. Development of a cultivation process for the enhancement of human interferon alpha 2b production in the oleaginous yeast, Yarrowia lipolytica. Gasmi N; Ayed A; Ammar BB; Zrigui R; Nicaud JM; Kallel H Microb Cell Fact; 2011 Nov; 10():90. PubMed ID: 22047602 [TBL] [Abstract][Full Text] [Related]
18. The TEA/ATTS transcription factor YlTec1p represses the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. Zhao XF; Li M; Li YQ; Chen XD; Gao XD FEMS Yeast Res; 2013 Feb; 13(1):50-61. PubMed ID: 23067114 [TBL] [Abstract][Full Text] [Related]
19. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Back A; Rossignol T; Krier F; Nicaud JM; Dhulster P Microb Cell Fact; 2016 Aug; 15(1):147. PubMed ID: 27553851 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Blazeck J; Hill A; Jamoussi M; Pan A; Miller J; Alper HS Metab Eng; 2015 Nov; 32():66-73. PubMed ID: 26384571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]