These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34058475)

  • 1. Anion solvation enhanced by positive supercharging mutations preserves thermal stability of an antibody in a wide pH range.
    Kasahara K; Kuroda D; Tanabe A; Kawade R; Nagatoishi S; Tsumoto K
    Biochem Biophys Res Commun; 2021 Jul; 563():54-59. PubMed ID: 34058475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anions in electrothermal supercharging of proteins with electrospray ionization follow a reverse Hofmeister series.
    Cassou CA; Williams ER
    Anal Chem; 2014 Feb; 86(3):1640-7. PubMed ID: 24410546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability.
    Der BS; Kluwe C; Miklos AE; Jacak R; Lyskov S; Gray JJ; Georgiou G; Ellington AD; Kuhlman B
    PLoS One; 2013; 8(5):e64363. PubMed ID: 23741319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of an antibody-enzyme coupling yield by enzyme surface supercharging.
    Prasse AA; Zauner T; Büttner K; Hoffmann R; Zuchner T
    BMC Biotechnol; 2014 Oct; 14():88. PubMed ID: 25326050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.
    Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ
    MAbs; 2015; 7(1):212-30. PubMed ID: 25559441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Supercharging as A Strategy to Enhance the Solubility and Plasminogen Cleavage Activity of Reteplase.
    Seyedhosseini Ghaheh H; Ganjalikhany MR; Yaghmaei P; Pourfarzam M; Mir Mohammad Sadeghi H
    Iran J Biotechnol; 2020 Oct; 18(4):e2556. PubMed ID: 34056023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Amino Acid Additives on Protein Stability during Electrothermal Supercharging in ESI-MS.
    Javanshad R; Panth R; Venter AR
    J Am Soc Mass Spectrom; 2024 Jan; 35(1):151-157. PubMed ID: 38078777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Pressure Electrospray Ionization Yields Supercharged Protein Complexes from Native Solutions While Preserving Noncovalent Interactions.
    Yin Z; Huang J; Miao H; Hu O; Li H
    Anal Chem; 2020 Sep; 92(18):12312-12321. PubMed ID: 32822155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process.
    Metwally H; McAllister RG; Popa V; Konermann L
    Anal Chem; 2016 May; 88(10):5345-54. PubMed ID: 27093467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens.
    Raghunathan G; Smart J; Williams J; Almagro JC
    J Mol Recognit; 2012 Mar; 25(3):103-13. PubMed ID: 22407974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local environment effects on charged mutations for developing aggregation-resistant monoclonal antibodies.
    Lee J; Chong SH; Ham S
    Sci Rep; 2020 Dec; 10(1):21191. PubMed ID: 33273506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Design To Reduce Conformational Flexibility and Aggregation Rates of an Antibody Fab Fragment.
    Zhang C; Samad M; Yu H; Chakroun N; Hilton D; Dalby PA
    Mol Pharm; 2018 Aug; 15(8):3079-3092. PubMed ID: 29897777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical improvement of rabbit derived single-domain antibodies by substitutions with amino acids conserved in camelid antibodies.
    Shinozaki N; Hashimoto R; Noda M; Uchiyama S
    J Biosci Bioeng; 2018 Jun; 125(6):654-661. PubMed ID: 29398547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two physics-based models for pH-dependent calculations of protein solubility.
    Spassov VZ; Kemmish H; Yan L
    Protein Sci; 2022 May; 31(5):e4299. PubMed ID: 35481654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered single-domain antibodies with high protease resistance and thermal stability.
    Hussack G; Hirama T; Ding W; Mackenzie R; Tanha J
    PLoS One; 2011; 6(11):e28218. PubMed ID: 22140551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of aggregation prone regions of therapeutic proteins.
    Chennamsetty N; Voynov V; Kayser V; Helk B; Trout BL
    J Phys Chem B; 2010 May; 114(19):6614-24. PubMed ID: 20411962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of inorganic phosphate and sulfate anions with collagen.
    Mertz EL; Leikin S
    Biochemistry; 2004 Nov; 43(47):14901-12. PubMed ID: 15554697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring designability of electrostatic complementarity at an antigen-antibody interface directed by mutagenesis, biophysical analysis, and molecular dynamics simulations.
    Yoshida K; Kuroda D; Kiyoshi M; Nakakido M; Nagatoishi S; Soga S; Shirai H; Tsumoto K
    Sci Rep; 2019 Mar; 9(1):4482. PubMed ID: 30872635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering evolution of immune recognition in antibodies.
    Kaur H; Sain N; Mohanty D; Salunke DM
    BMC Struct Biol; 2018 Dec; 18(1):19. PubMed ID: 30563492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercharging of Proteins by Salts during Polarity Reversed Nano-Electrospray Ionization.
    Gong X; Li C; Zhai R; Xie J; Jiang Y; Fang X
    Anal Chem; 2019 Feb; 91(3):1826-1837. PubMed ID: 30620564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.