These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 34058535)

  • 21. Epigenetic reprogramming in cancer.
    Suvà ML; Riggi N; Bernstein BE
    Science; 2013 Mar; 339(6127):1567-70. PubMed ID: 23539597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perspectives on somatic reprogramming: spotlighting epigenetic regulation and cellular heterogeneity.
    Chen J
    Curr Opin Genet Dev; 2020 Oct; 64():21-25. PubMed ID: 32599300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interplay of chromatin and transcription factors during cell fate transitions in development and reprogramming.
    Peñalosa-Ruiz G; Bright AR; Mulder KW; Veenstra GJC
    Biochim Biophys Acta Gene Regul Mech; 2019 Sep; 1862(9):194407. PubMed ID: 31356991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers.
    Seisenberger S; Peat JR; Hore TA; Santos F; Dean W; Reik W
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1609):20110330. PubMed ID: 23166394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
    Mansour AA; Gafni O; Weinberger L; Zviran A; Ayyash M; Rais Y; Krupalnik V; Zerbib M; Amann-Zalcenstein D; Maza I; Geula S; Viukov S; Holtzman L; Pribluda A; Canaani E; Horn-Saban S; Amit I; Novershtern N; Hanna JH
    Nature; 2012 Aug; 488(7411):409-13. PubMed ID: 22801502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks.
    Morris SA
    Development; 2016 Aug; 143(15):2696-705. PubMed ID: 27486230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hansel, Gretel, and the Consequences of Failing to Remove Histone Methylation Breadcrumbs.
    Lee TW; Katz DJ
    Trends Genet; 2020 Mar; 36(3):160-176. PubMed ID: 32007289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetic reprogramming of mouse germ cells toward totipotency.
    Surani MA; Hajkova P
    Cold Spring Harb Symp Quant Biol; 2010; 75():211-8. PubMed ID: 21139069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lineage conversion methodologies meet the reprogramming toolbox.
    Sancho-Martinez I; Baek SH; Izpisua Belmonte JC
    Nat Cell Biol; 2012 Sep; 14(9):892-9. PubMed ID: 22945254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic predisposition to reprogramming fates in somatic cells.
    Pour M; Pilzer I; Rosner R; Smith ZD; Meissner A; Nachman I
    EMBO Rep; 2015 Mar; 16(3):370-8. PubMed ID: 25600117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell Reprogramming: The Many Roads to Success.
    Aydin B; Mazzoni EO
    Annu Rev Cell Dev Biol; 2019 Oct; 35():433-452. PubMed ID: 31340126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering cell identity: establishing new gene regulatory and chromatin landscapes.
    Guo C; Morris SA
    Curr Opin Genet Dev; 2017 Oct; 46():50-57. PubMed ID: 28667865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolving principles underlying neural lineage conversion and their relevance for biomedical translation.
    Flitsch LJ; Brüstle O
    F1000Res; 2019; 8():. PubMed ID: 31559012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic OCT4 regulatory network: stochastic analysis of cellular reprogramming.
    Bruno S; Schlaeger TM; Del Vecchio D
    NPJ Syst Biol Appl; 2024 Jan; 10(1):3. PubMed ID: 38184707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concise review: chromatin and genome organization in reprogramming.
    Biran A; Meshorer E
    Stem Cells; 2012 Sep; 30(9):1793-9. PubMed ID: 22782851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23486282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetic control of cell fate - an interview with Maria-Elena Torres-Padilla.
    Chimal-Monroy J; Escalante-Alcalde D
    Int J Dev Biol; 2021; 65(1-2-3):163-169. PubMed ID: 32930362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications.
    Qin H; Zhao A; Zhang C; Fu X
    Stem Cell Rev Rep; 2016 Dec; 12(6):708-720. PubMed ID: 27623868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of iPS cell technology to cancer epigenome study: uncovering the mechanism of cell status conversion for drug resistance in tumor.
    Matsuda Y; Semi K; Yamada Y
    Pathol Int; 2014 Jul; 64(7):299-308. PubMed ID: 25047500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.
    Eilertsen KJ; Power RA; Harkins LL; Misica P
    Anim Reprod Sci; 2007 Mar; 98(1-2):129-46. PubMed ID: 17166676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.