These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34058552)

  • 21. Flexible Sub-Micro Carbon Fiber@CNTs as Anodes for Potassium-Ion Batteries.
    Shen C; Yuan K; Tian T; Bai M; Wang JG; Li X; Xie K; Fu QG; Wei B
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5015-5021. PubMed ID: 30620175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural engineering of bimetallic selenides for high-energy density sodium-ion half/full batteries.
    Zhu J; Chen X; Zhang L; Wang Q; Yang J; Geng H
    Dalton Trans; 2022 Nov; 51(44):16898-16905. PubMed ID: 36305231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon Hollow Tube-Confined Sb/Sb
    Wu Y; Zheng J; Tong Y; Liu X; Sun Y; Niu L; Li H
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51066-51077. PubMed ID: 34670363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Performance Potassium-Ion Batteries with Robust Stability Based on N/S-Codoped Hollow Carbon Nanocubes.
    Lu X; Pan X; Fang Z; Zhang D; Xu S; Wang L; Liu Q; Shao G; Fu D; Teng J; Yang W
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41619-41627. PubMed ID: 34431652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ni
    Zhu H; Li Z; Xu F; Qin Z; Sun R; Wang C; Lu S; Zhang Y; Fan H
    J Colloid Interface Sci; 2022 Apr; 611():718-725. PubMed ID: 34876265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cage-Confinement Pyrolysis Strategy to Synthesize Hollow Carbon Nanocage-Coated Copper Phosphide for Stable and High-Capacity Potassium-Ion Storage.
    Tong H; Chen S; Yang P; Wang C; Lu J; Zeng X; Tu J; Wang P; Cheng Z; Chen Q
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52697-52705. PubMed ID: 34704731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MOF-Derived CoSe
    Yang SH; Park SK; Kang YC
    Nanomicro Lett; 2020 Oct; 13(1):9. PubMed ID: 34138196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic Interactions Leading to Hierarchical Interpenetrating Electroconductive Networks in Silicon Anodes for Fast Lithium Storage.
    Jiang M; Chen J; Ma Y; Luo W; Yang J
    Chemistry; 2021 Jun; 27(36):9320-9327. PubMed ID: 33855743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BiSb@Bi
    Wang Z; Duan C; Wang D; Dong K; Luo S; Liu Y; Wang Q; Zhang Y; Hao A
    J Colloid Interface Sci; 2020 Nov; 580():429-438. PubMed ID: 32711194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast and Durable Potassium Storage Enabled by Constructing Stress-Dispersed Co
    Zhang H; Cheng Y; Zhang Q; Ye W; Yu X; Wang MS
    ACS Nano; 2021 Jun; 15(6):10107-10118. PubMed ID: 34124885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monodispersed Carbon-Coated Cubic NiP
    Lou P; Cui Z; Jia Z; Sun J; Tan Y; Guo X
    ACS Nano; 2017 Apr; 11(4):3705-3715. PubMed ID: 28323408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life.
    Hu L; Huang Y; Zhang F; Chen Q
    Nanoscale; 2013 May; 5(10):4186-90. PubMed ID: 23584557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterostructured CoS
    Suo G; Musab Ahmed S; Cheng Y; Zhang J; Li Z; Hou X; Yang Y; Ye X; Feng L; Zhang L; Yu Q
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):275-283. PubMed ID: 34626974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FeCoS
    Xu H; Huang S; Yang Y; Chen J; Liang L; Zhang J; Li L; Zhao X; Zhang W
    Dalton Trans; 2022 Nov; 51(42):16126-16134. PubMed ID: 36227091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cobalt Disulfide Nanoparticles Embedded in Porous Carbonaceous Micro-Polyhedrons Interlinked by Carbon Nanotubes for Superior Lithium and Sodium Storage.
    Ma Y; Ma Y; Bresser D; Ji Y; Geiger D; Kaiser U; Streb C; Varzi A; Passerini S
    ACS Nano; 2018 Jul; 12(7):7220-7231. PubMed ID: 29940098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anchoring π-d Conjugated Metal-Organic Frameworks with Dual-Active Centers on Carbon Nanotubes for Advanced Potassium-Ion Batteries.
    Wang J; Jia H; Liu Z; Yu J; Cheng L; Wang HG; Cui F; Zhu G
    Adv Mater; 2024 Feb; 36(6):e2305605. PubMed ID: 37566706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Bandgap-Tuned Tetragonal Perovskite as Zero-Strain Anode for Potassium-Ion Batteries.
    Yang W; Huang J; Zheng Q; Chen L; Orita A; Saito N; Zhang Z; Zhang Y; Yang L
    Angew Chem Int Ed Engl; 2024 Dec; 63(52):e202412706. PubMed ID: 39207271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the Cycling Stability by Tuning the Chemical Bonding between Phosphorus and Carbon Nanotubes for Potassium-Ion Battery Anodes.
    Peng D; Chen Y; Ma H; Zhang L; Hu Y; Chen X; Cui Y; Shi Y; Zhuang Q; Ju Z
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37275-37284. PubMed ID: 32814407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen and Fluorine Dual Doping of Soft Carbon Nanofibers as Advanced Anode for Potassium Ion Batteries.
    Zhong YL; Dai WX; Liu D; Wang W; Wang LT; Xie JP; Li R; Yuan QL; Hong G
    Small; 2021 Oct; 17(43):e2101576. PubMed ID: 34155817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ quantitative polymerization of dopamine on dual functional carbon nanotubes as high stability and rate capacity anodes for potassium ion storage.
    Fu Y; Hu B; Ma G; Zhang M
    Nanoscale; 2023 Jun; 15(24):10330-10341. PubMed ID: 37283186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.