These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 34058629)

  • 1. DV-DCNN: Dual-view deep convolutional neural network for matching detected masses in mammograms.
    AlGhamdi M; Abdel-Mottaleb M
    Comput Methods Programs Biomed; 2021 Aug; 207():106152. PubMed ID: 34058629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards improved breast mass detection using dual-view mammogram matching.
    Yan Y; Conze PH; Lamard M; Quellec G; Cochener B; Coatrieux G
    Med Image Anal; 2021 Jul; 71():102083. PubMed ID: 33979759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network.
    Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J
    PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of k-Gabor features from medio-lateral-oblique and craniocaudal view mammograms for improved breast cancer diagnosis.
    Sasikala S; Ezhilarasi M
    J Cancer Res Ther; 2018; 14(5):1036-1041. PubMed ID: 30197344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-scale attention-based convolutional neural network for classification of breast masses in mammograms.
    Niu J; Li H; Zhang C; Li D
    Med Phys; 2021 Jul; 48(7):3878-3892. PubMed ID: 33982807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms.
    Aly GH; Marey M; El-Sayed SA; Tolba MF
    Comput Methods Programs Biomed; 2021 Mar; 200():105823. PubMed ID: 33190942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset.
    Sawyer Lee R; Dunnmon JA; He A; Tang S; RĂ© C; Rubin DL
    J Biomed Inform; 2021 Jan; 113():103656. PubMed ID: 33309994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mammographic breast density using a deep convolutional neural network.
    Ciritsis A; Rossi C; Vittoria De Martini I; Eberhard M; Marcon M; Becker AS; Berger N; Boss A
    Br J Radiol; 2019 Jan; 92(1093):20180691. PubMed ID: 30209957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for breast cancer classification using Multi-DCNNs.
    Ragab DA; Attallah O; Sharkas M; Ren J; Marshall S
    Comput Biol Med; 2021 Apr; 131():104245. PubMed ID: 33556893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Algorithm for Breast Mass Classification in Digital Mammography Based on Feature Fusion.
    Zhang Q; Li Y; Zhao G; Man P; Lin Y; Wang M
    J Healthc Eng; 2020; 2020():8860011. PubMed ID: 33425311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
    Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S
    J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system.
    Al-Masni MA; Al-Antari MA; Park JM; Gi G; Kim TY; Rivera P; Valarezo E; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Apr; 157():85-94. PubMed ID: 29477437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Convolutional Neural Networks for breast cancer screening.
    Chougrad H; Zouaki H; Alheyane O
    Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FS-UNet: Mass segmentation in mammograms using an encoder-decoder architecture with feature strengthening.
    Pi J; Qi Y; Lou M; Li X; Wang Y; Xu C; Ma Y
    Comput Biol Med; 2021 Oct; 137():104800. PubMed ID: 34507155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification.
    Li X; Qin G; He Q; Sun L; Zeng H; He Z; Chen W; Zhen X; Zhou L
    Eur Radiol; 2020 Feb; 30(2):778-788. PubMed ID: 31691121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach.
    Mahmood T; Li J; Pei Y; Akhtar F; Rehman MU; Wasti SH
    PLoS One; 2022; 17(1):e0263126. PubMed ID: 35085352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using convolutional neural networks to discriminate between cysts and masses in Monte Carlo-simulated dual-energy mammography.
    Makeev A; Toner B; Qian M; Badal A; Glick SJ
    Med Phys; 2021 Aug; 48(8):4648-4655. PubMed ID: 34050965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.