BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34058658)

  • 41. Investigation of the chemical composition and biological activity of edible grapevine (Vitis vinifera L.) leaf varieties.
    Pintać D; Četojević-Simin D; Berežni S; Orčić D; Mimica-Dukić N; Lesjak M
    Food Chem; 2019 Jul; 286():686-695. PubMed ID: 30827664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR.
    Díaz-de-Cerio E; Aguilera-Saez LM; Gómez-Caravaca AM; Verardo V; Fernández-Gutiérrez A; Fernández I; Arráez-Román D
    Anal Bioanal Chem; 2018 Jun; 410(15):3607-3619. PubMed ID: 29629503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of phenolic content, in vitro biological activity, and pesticide loads of extracts from white grape skins from organic and conventional cultivars.
    Corrales M; Fernandez A; Vizoso Pinto MG; Butz P; Franz CM; Schuele E; Tauscher B
    Food Chem Toxicol; 2010 Dec; 48(12):3471-6. PubMed ID: 20870004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectrofluorometric analysis combined with machine learning for geographical and varietal authentication, and prediction of phenolic compound concentrations in red wine.
    Ranaweera RKR; Gilmore AM; Capone DL; Bastian SEP; Jeffery DW
    Food Chem; 2021 Nov; 361():130149. PubMed ID: 34082385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress.
    Król A; Weidner S
    J Plant Physiol; 2017 Apr; 211():114-126. PubMed ID: 28178572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress.
    Zhang Y; Ma XM; Wang XC; Liu JH; Huang BY; Guo XY; Xiong SP; La GX
    Plant Physiol Biochem; 2017 Feb; 111():30-38. PubMed ID: 27894005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Region identification of Xinyang Maojian tea using UHPLC-Q-TOF/MS-based metabolomics coupled with multivariate statistical analyses.
    Wang Z; Ma B; Ma C; Zheng C; Zhou B; Guo G; Xia T
    J Food Sci; 2021 May; 86(5):1681-1691. PubMed ID: 33798265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flavanol Quantification of Grapes via Multiple Reaction Monitoring Mass Spectrometry. Application to Differentiation among Clones of Vitis vinifera L. cv. Rufete Grapes.
    García-Estévez I; Alcalde-Eon C; Escribano-Bailón MT
    J Agric Food Chem; 2017 Aug; 65(31):6359-6368. PubMed ID: 28158946
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Profiling monoterpenol glycoconjugation in Vitis vinifera L. cv. Muscat of Alexandria using a novel putative compound database approach, high resolution mass spectrometry and collision induced dissociation fragmentation analysis.
    Hjelmeland AK; Zweigenbaum J; Ebeler SE
    Anal Chim Acta; 2015 Aug; 887():138-147. PubMed ID: 26320795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves.
    Rocchetti G; Blasi F; Montesano D; Ghisoni S; Marcotullio MC; Sabatini S; Cossignani L; Lucini L
    Food Res Int; 2019 Jan; 115():319-327. PubMed ID: 30599948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation of a Rapid Multiresidue Method for the Determination of Pesticide Residues in Vine Leaves. Comparison of the Results According to the Different Conservation Methods.
    Hayar S; Zeitoun R; Maestroni BM
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33671830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Partial Solar Radiation Exclusion with Color Shade Nets Reduces the Degradation of Organic Acids and Flavonoids of Grape Berry (Vitis vinifera L.).
    Martínez-Lüscher J; Chen CCL; Brillante L; Kurtural SK
    J Agric Food Chem; 2017 Dec; 65(49):10693-10702. PubMed ID: 29141407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of ultra-high-pressure liquid chromatography-quadrupole time-of-flight MS to discover the presence of pesticide metabolites in food samples.
    Hernández F; Grimalt S; Pozo OJ; Sancho JV
    J Sep Sci; 2009 Jul; 32(13):2245-61. PubMed ID: 19569104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Method validation for the determination of 314 pesticide residues using tandem MS systems (GC-MS/MS and LC-MS/MS) in raisins: Focus on risk exposure assessment and respective processing factors in real samples (a pilot survey).
    Constantinou M; Louca-Christodoulou D; Agapiou A
    Food Chem; 2021 Oct; 360():129964. PubMed ID: 33993074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comprehensive multiresidue determination of pesticides and plant growth regulators in grapevine leaves using liquid- and gas chromatography with tandem mass spectrometry.
    Patil R; Khan Z; Pudale A; Shinde R; Ahammed Shabeer TP; Patil A; Banerjee K
    J Chromatogr A; 2018 Dec; 1579():73-82. PubMed ID: 30366689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product "wood" and its comparison with leaf counterpart.
    Ammar S; Contreras MDM; Gargouri B; Segura-Carretero A; Bouaziz M
    Phytochem Anal; 2017 May; 28(3):217-229. PubMed ID: 28067965
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops.
    Martínez Bueno MJ; Díaz-Galiano FJ; Rajski Ł; Cutillas V; Fernández-Alba AR
    J Chromatogr A; 2018 Apr; 1546():66-76. PubMed ID: 29526497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-performance liquid chromatography-mass spectrometry and evaporative light-scattering detector to compare phenolic profiles of muscadine grapes.
    You Q; Chen F; Sharp JL; Wang X; You Y; Zhang C
    J Chromatogr A; 2012 Jun; 1240():96-103. PubMed ID: 22520637
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec.
    González CV; Fanzone ML; Cortés LE; Bottini R; Lijavetzky DC; Ballaré CL; Boccalandro HE
    Phytochemistry; 2015 Feb; 110():46-57. PubMed ID: 25514818
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture.
    Martins V; Teixeira A; Bassil E; Blumwald E; Gerós H
    Plant Physiol Biochem; 2014 Sep; 82():270-8. PubMed ID: 25022258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.