These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34059654)
1. The SOC1-like gene BoMADS50 is associated with the flowering of Bambusa oldhamii. Hou D; Li L; Ma T; Pei J; Zhao Z; Lu M; Wu A; Lin X Hortic Res; 2021 Jun; 8(1):133. PubMed ID: 34059654 [TBL] [Abstract][Full Text] [Related]
2. Comparative phylogenomic analyses and co-expression gene network reveal insights in flowering time and aborted meiosis in woody bamboo, Zhao W; Guo C; Yao W; Zhang L; Ding Y; Yang Z; Lin S Front Plant Sci; 2022; 13():1023240. PubMed ID: 36438131 [TBL] [Abstract][Full Text] [Related]
3. Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Lin XC; Chow TY; Chen HH; Liu CC; Chou SJ; Huang BL; Kuo CI; Wen CK; Huang LC; Fang W Genet Mol Res; 2010 Jun; 9(2):1085-93. PubMed ID: 20568053 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis. Xiao G; Li B; Chen H; Chen W; Wang Z; Mao B; Gui R; Guo X BMC Plant Biol; 2018 Oct; 18(1):232. PubMed ID: 30314465 [TBL] [Abstract][Full Text] [Related]
5. Ectopic expression of the BoTFL1-like gene of Bambusa oldhamii delays blossoming in Arabidopsis thaliana and rescues the tfl1 mutant phenotype. Zeng HY; Lu YT; Yang XM; Xu YH; Lin XC Genet Mol Res; 2015 Aug; 14(3):9306-17. PubMed ID: 26345864 [TBL] [Abstract][Full Text] [Related]
6. RNA-seq and phytohormone analysis reveals the culm color variation of Jiao Y; Zeng H; Xia H; Wang Y; Wang J; Jin C PeerJ; 2022; 10():e12796. PubMed ID: 35070510 [TBL] [Abstract][Full Text] [Related]
7. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. Dutta S; Biswas P; Chakraborty S; Mitra D; Pal A; Das M BMC Genomics; 2018 Mar; 19(1):190. PubMed ID: 29523071 [TBL] [Abstract][Full Text] [Related]
8. First proteome study of sporadic flowering in bamboo species (Bambusa vulgaris and Dendrocalamus manipureanus) reveal the boom is associated with stress and mobile genetic elements. Louis B; Waikhom SD; Goyari S; Jose RC; Roy P; Talukdar NC Gene; 2015 Dec; 574(2):255-64. PubMed ID: 26260016 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive analysis of the floral transition in ma bamboo (Dendrocalamus latiflorus) reveals the roles of DlFTs involved in flowering. Fan H; Zhuo R; Wang H; Xu J; Jin K; Huang B; Qiao G Tree Physiol; 2022 Sep; 42(9):1899-1911. PubMed ID: 35466991 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of PI-like gene in relation to flower development from bamboo (Bambusa oldhamii). Zhu L; Shi Y; Zang Q; Shi Q; Liu S; Xu Y; Lin X J Genet; 2016 Mar; 95(1):71-8. PubMed ID: 27019434 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548 [TBL] [Abstract][Full Text] [Related]
12. Bruno-like proteins modulate flowering time via 3' UTR-dependent decay of SOC1 mRNA. Kim HS; Abbasi N; Choi SB New Phytol; 2013 May; 198(3):747-756. PubMed ID: 23437850 [TBL] [Abstract][Full Text] [Related]
13. Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications. Richter R; Kinoshita A; Vincent C; Martinez-Gallegos R; Gao H; van Driel AD; Hyun Y; Mateos JL; Coupland G PLoS Genet; 2019 Apr; 15(4):e1008065. PubMed ID: 30946745 [TBL] [Abstract][Full Text] [Related]
14. Differential gene expression during floral transition in pineapple. Paull RE; Ksouri N; Kantar M; Zerpa-Catanho D; Chen NJ; Uruu G; Yue J; Guo S; Zheng Y; Wai CMJ; Ming R Plant Direct; 2023 Nov; 7(11):e541. PubMed ID: 38028646 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of Zheng Z; Yang X; Fu Y; Zhu L; Wei H; Lin X Front Plant Sci; 2017; 8():1526. PubMed ID: 28951734 [TBL] [Abstract][Full Text] [Related]
16. Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins. Lee JH; Park SH; Ahn JH Plant Sci; 2012 Apr; 185-186():97-104. PubMed ID: 22325870 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry. Lei HJ; Yuan HZ; Liu Y; Guo XW; Liao X; Liu LL; Wang Q; Li TH Gene; 2013 Dec; 531(2):158-67. PubMed ID: 24055423 [TBL] [Abstract][Full Text] [Related]
18. Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Liu C; Zhou J; Bracha-Drori K; Yalovsky S; Ito T; Yu H Development; 2007 May; 134(10):1901-10. PubMed ID: 17428825 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Ding L; Wang Y; Yu H Plant Cell Physiol; 2013 Apr; 54(4):595-608. PubMed ID: 23396600 [TBL] [Abstract][Full Text] [Related]
20. Auxin-induced AUXIN RESPONSE FACTOR4 activates APETALA1 and FRUITFULL to promote flowering in woodland strawberry. Dong X; Li Y; Guan Y; Wang S; Luo H; Li X; Li H; Zhang Z Hortic Res; 2021 May; 8(1):115. PubMed ID: 33931632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]