These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34059862)

  • 1. Dynamics and rheology of a suspension of super-paramagnetic chains under the combined effect of a shear flow and a rotating magnetic field.
    Rossi E; Ruiz-Lopez JA; Vázquez-Quesada A; Ellero M
    Soft Matter; 2021 Jun; 17(24):6006-6019. PubMed ID: 34059862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of a dilute suspension of liquid-filled elastic capsules.
    Bagchi P; Kalluri RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056320. PubMed ID: 20866335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology of a Dilute Suspension of Aggregates in Shear-Thinning Fluids.
    Trofa M; D'Avino G
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superparamagnetic particle dynamics and mixing in a rotating capillary tube with a stationary magnetic field.
    Lee JT; Abid A; Cheung KH; Sudheendra L; Kennedy IM
    Microfluid Nanofluidics; 2012 Sep; 13(3):461-468. PubMed ID: 23066382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling.
    Salmo IC; Sorbie KS; Skauge A
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear Thinning of Noncolloidal Suspensions.
    Vázquez-Quesada A; Tanner RI; Ellero M
    Phys Rev Lett; 2016 Sep; 117(10):108001. PubMed ID: 27636496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear thinning and shear thickening of a confined suspension of vesicles.
    Nait Ouhra A; Farutin A; Aouane O; Ez-Zahraouy H; Benyoussef A; Misbah C
    Phys Rev E; 2018 Jan; 97(1-1):012404. PubMed ID: 29448354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetoviscosity in dilute ferrofluids from rotational brownian dynamics simulations.
    Soto-Aquino D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046310. PubMed ID: 21230393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.
    Chen K; Wang Y; Xuan S; Gong X
    J Colloid Interface Sci; 2017 Jul; 497():378-384. PubMed ID: 28314143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry.
    DiCarlo AL; Holdsworth DW; Poepping TL
    Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonmodal stability in Hagen-Poiseuille flow of a shear thinning fluid.
    Liu R; Liu QS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066318. PubMed ID: 23005217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium Brownian dynamics analysis of negative viscosity induced in a magnetic fluid subjected to both ac magnetic and shear flow fields.
    Morimoto H; Maekawa T; Matsumoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061508. PubMed ID: 12188733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear thickening in a model colloidal suspension.
    Delhommelle J; Petravic J
    J Chem Phys; 2005 Aug; 123(7):074707. PubMed ID: 16229610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic rheology of a supercooled polymer melt in nonuniform oscillating flows between rapidly oscillating plates.
    Yasuda S; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031501. PubMed ID: 22060373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting shear thickening behavior of a concentrated injectable suspension of levodopa.
    Allahham A; Stewart P; Marriott J; Mainwaring D
    J Pharm Sci; 2005 Nov; 94(11):2393-402. PubMed ID: 16200618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.