These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 34060618)
1. The role of splicing factors in retinitis pigmentosa: links to cilia. Maxwell DW; O'Keefe RT; Roy S; Hentges KE Biochem Soc Trans; 2021 Jun; 49(3):1221-1231. PubMed ID: 34060618 [TBL] [Abstract][Full Text] [Related]
2. Mutations in spliceosomal proteins and retina degeneration. Růžičková Š; Staněk D RNA Biol; 2017 May; 14(5):544-552. PubMed ID: 27302685 [TBL] [Abstract][Full Text] [Related]
3. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. Makarova OV; Makarov EM; Liu S; Vornlocher HP; Lührmann R EMBO J; 2002 Mar; 21(5):1148-57. PubMed ID: 11867543 [TBL] [Abstract][Full Text] [Related]
4. Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa. Schmidt-Kastner R; Yamamoto H; Hamasaki D; Yamamoto H; Parel JM; Schmitz C; Dorey CK; Blanks JC; Preising MN Mol Vis; 2008 Jan; 14():125-35. PubMed ID: 18334927 [TBL] [Abstract][Full Text] [Related]
5. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Tanackovic G; Ransijn A; Thibault P; Abou Elela S; Klinck R; Berson EL; Chabot B; Rivolta C Hum Mol Genet; 2011 Jun; 20(11):2116-30. PubMed ID: 21378395 [TBL] [Abstract][Full Text] [Related]
6. Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. Linder B; Hirmer A; Gal A; Rüther K; Bolz HJ; Winkler C; Laggerbauer B; Fischer U PLoS One; 2014; 9(11):e111754. PubMed ID: 25383878 [TBL] [Abstract][Full Text] [Related]
7. A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa. Tanackovic G; Ransijn A; Ayuso C; Harper S; Berson EL; Rivolta C Am J Hum Genet; 2011 May; 88(5):643-9. PubMed ID: 21549338 [TBL] [Abstract][Full Text] [Related]
8. Primary cilia biogenesis and associated retinal ciliopathies. Chen HY; Kelley RA; Li T; Swaroop A Semin Cell Dev Biol; 2021 Feb; 110():70-88. PubMed ID: 32747192 [TBL] [Abstract][Full Text] [Related]
9. A Stanković D; Claudius AK; Schertel T; Bresser T; Uhlirova M Dis Model Mech; 2020 Jun; 13(6):. PubMed ID: 32424050 [TBL] [Abstract][Full Text] [Related]
10. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Buskin A; Zhu L; Chichagova V; Basu B; Mozaffari-Jovin S; Dolan D; Droop A; Collin J; Bronstein R; Mehrotra S; Farkas M; Hilgen G; White K; Pan KT; Treumann A; Hallam D; Bialas K; Chung G; Mellough C; Ding Y; Krasnogor N; Przyborski S; Zwolinski S; Al-Aama J; Alharthi S; Xu Y; Wheway G; Szymanska K; McKibbin M; Inglehearn CF; Elliott DJ; Lindsay S; Ali RR; Steel DH; Armstrong L; Sernagor E; Urlaub H; Pierce E; Lührmann R; Grellscheid SN; Johnson CA; Lako M Nat Commun; 2018 Oct; 9(1):4234. PubMed ID: 30315276 [TBL] [Abstract][Full Text] [Related]
12. RNA Splicing Factor Mutations That Cause Retinitis Pigmentosa Result in Circadian Dysregulation. Shakhmantsir I; Dooley SJ; Kishore S; Chen D; Pierce E; Bennett J; Sehgal A J Biol Rhythms; 2020 Feb; 35(1):72-83. PubMed ID: 31726916 [TBL] [Abstract][Full Text] [Related]
13. Characterizing the morbid genome of ciliopathies. Shaheen R; Szymanska K; Basu B; Patel N; Ewida N; Faqeih E; Al Hashem A; Derar N; Alsharif H; Aldahmesh MA; Alazami AM; Hashem M; Ibrahim N; Abdulwahab FM; Sonbul R; Alkuraya H; Alnemer M; Al Tala S; Al-Husain M; Morsy H; Seidahmed MZ; Meriki N; Al-Owain M; AlShahwan S; Tabarki B; Salih MA; ; Faquih T; El-Kalioby M; Ueffing M; Boldt K; Logan CV; Parry DA; Al Tassan N; Monies D; Megarbane A; Abouelhoda M; Halees A; Johnson CA; Alkuraya FS Genome Biol; 2016 Nov; 17(1):242. PubMed ID: 27894351 [TBL] [Abstract][Full Text] [Related]
14. Retinal primary cilia and their dysfunction in retinal neurodegenerative diseases: beyond ciliopathies. Liu X; Pacwa A; Bresciani G; Swierczynska M; Dorecka M; Smedowski A Mol Med; 2024 Jul; 30(1):109. PubMed ID: 39060957 [TBL] [Abstract][Full Text] [Related]
15. FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Di Gioia SA; Letteboer SJ; Kostic C; Bandah-Rozenfeld D; Hetterschijt L; Sharon D; Arsenijevic Y; Roepman R; Rivolta C Hum Mol Genet; 2012 Dec; 21(23):5174-84. PubMed ID: 22940612 [TBL] [Abstract][Full Text] [Related]
16. Ciliopathies and the Kidney: A Review. McConnachie DJ; Stow JL; Mallett AJ Am J Kidney Dis; 2021 Mar; 77(3):410-419. PubMed ID: 33039432 [TBL] [Abstract][Full Text] [Related]
17. Retinitis pigmentosa-linked mutation in DHX38 modulates its splicing activity. Obuća M; Cvačková Z; Kubovčiak J; Kolář M; Staněk D PLoS One; 2022; 17(4):e0265742. PubMed ID: 35385551 [TBL] [Abstract][Full Text] [Related]
18. OFD1, as a Ciliary Protein, Exhibits Neuroprotective Function in Photoreceptor Degeneration Models. Wang J; Chen X; Wang F; Zhang J; Li P; Li Z; Xu J; Gao F; Jin C; Tian H; Zhang J; Li W; Lu L; Xu GT PLoS One; 2016; 11(5):e0155860. PubMed ID: 27196396 [TBL] [Abstract][Full Text] [Related]
19. Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Zhao C; Bellur DL; Lu S; Zhao F; Grassi MA; Bowne SJ; Sullivan LS; Daiger SP; Chen LJ; Pang CP; Zhao K; Staley JP; Larsson C Am J Hum Genet; 2009 Nov; 85(5):617-27. PubMed ID: 19878916 [TBL] [Abstract][Full Text] [Related]