These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 34060665)

  • 1. Seeing dew deposition from satellites: leveraging microwave remote sensing for the study of water dynamics in and on plants.
    Gerlein-Safdi C
    New Phytol; 2021 Jul; 231(1):5-7. PubMed ID: 34060665
    [No Abstract]   [Full Text] [Related]  

  • 2. Macro to micro: microwave remote sensing of plant water content for physiology and ecology.
    Konings AG; Rao K; Steele-Dunne SC
    New Phytol; 2019 Aug; 223(3):1166-1172. PubMed ID: 30919449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.].
    Li MZ; Gao YK; Di XY; Fan WY
    Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):785-793. PubMed ID: 29726183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the Indo-Gangetic basin.
    Sure A; Dikshit O
    J Environ Manage; 2019 Mar; 234():75-89. PubMed ID: 30616191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dew-induced transpiration suppression impacts the water and isotope balances of Colocasia leaves.
    Gerlein-Safdi C; Gauthier PPG; Caylor KK
    Oecologia; 2018 Aug; 187(4):1041-1051. PubMed ID: 29955985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content.
    Xu X; Konings AG; Longo M; Feldman A; Xu L; Saatchi S; Wu D; Wu J; Moorcroft P
    New Phytol; 2021 Jul; 231(1):122-136. PubMed ID: 33539544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foliar water uptake in Amazonian trees: Evidence and consequences.
    Binks O; Mencuccini M; Rowland L; da Costa ACL; de Carvalho CJR; Bittencourt P; Eller C; Teodoro GS; Carvalho EJM; Soza A; Ferreira L; Vasconcelos SS; Oliveira R; Meir P
    Glob Chang Biol; 2019 Aug; 25(8):2678-2690. PubMed ID: 31012521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ELBARA II, an L-band radiometer system for soil moisture research.
    Schwank M; Wiesmann A; Werner C; Mätzler C; Weber D; Murk A; Völksch I; Wegmüller U
    Sensors (Basel); 2010; 10(1):584-612. PubMed ID: 22315556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved approach for remotely sensing water stress impacts on forest C uptake.
    Sims DA; Brzostek ER; Rahman AF; Dragoni D; Phillips RP
    Glob Chang Biol; 2014 Sep; 20(9):2856-66. PubMed ID: 24464936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dew water-uptake pathways in Negev desert plants: a study using stable isotope tracers.
    Hill AJ; Dawson TE; Dody A; Rachmilevitch S
    Oecologia; 2021 Jun; 196(2):353-361. PubMed ID: 34008141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada.
    Jones MO; Kimball JS; Jones LA
    Glob Chang Biol; 2013 Oct; 19(10):3111-22. PubMed ID: 23749682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.
    Fricker GA; Wolf JA; Saatchi SS; Gillespie TW
    Ecol Appl; 2015 Oct; 25(7):1776-89. PubMed ID: 26591445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Variation of leaf area index estimation in forests based on remote sensing images of different spatial scales.].
    Liu T; Chen C; Fan WY; Mao XG; Yu Y
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1687-1698. PubMed ID: 31107026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: A cross-platform comparison.
    Lu X; Cheng X; Li X; Chen J; Sun M; Ji M; He H; Wang S; Li S; Tang J
    Sci Total Environ; 2018 Dec; 644():439-451. PubMed ID: 29981994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA.
    Griffith KT; Ponette-González AG; Curran LM; Weathers KC
    Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach.
    Kamoske AG; Dahlin KM; Serbin SP; Stark SC
    Ecol Appl; 2021 Mar; 31(2):e02230. PubMed ID: 33015908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Evaluation of Passive Microwave and Optical/IR Data for Modelling Vegetation Transmissivity towards Improved Soil Moisture Retrieval.
    Moradizadeh M; Srivastava PK; Petropoulos GP
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moisture content estimation of forest litter based on remote sensing data.
    Yang X; Yu Y; Hu H; Sun L
    Environ Monit Assess; 2018 Jun; 190(7):421. PubMed ID: 29934742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moisture pulse-reserve in the soil-plant continuum observed across biomes.
    Feldman AF; Short Gianotti DJ; Konings AG; McColl KA; Akbar R; Salvucci GD; Entekhabi D
    Nat Plants; 2018 Dec; 4(12):1026-1033. PubMed ID: 30518832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress in retrieving vegetation water content under different vegetation coverage condition based on remote sensing spectral information].
    Zhang JH; Li L; Yao FM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1638-42. PubMed ID: 20707166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.