These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 34060809)
1. The Manipulation of the Internal Hydrophobicity of FraC Nanopores Augments Peptide Capture and Recognition. Lucas FLR; Sarthak K; Lenting EM; Coltan D; van der Heide NJ; Versloot RCA; Aksimentiev A; Maglia G ACS Nano; 2021 Jun; 15(6):9600-9613. PubMed ID: 34060809 [TBL] [Abstract][Full Text] [Related]
2. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Huang G; Willems K; Soskine M; Wloka C; Maglia G Nat Commun; 2017 Oct; 8(1):935. PubMed ID: 29038539 [TBL] [Abstract][Full Text] [Related]
3. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Huang G; Voet A; Maglia G Nat Commun; 2019 Feb; 10(1):835. PubMed ID: 30783102 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Fragaceatoxin C (FraC) Nanopores. Mutter NL; Huang G; van der Heide NJ; Lucas FLR; Galenkamp NS; Maglia G; Wloka C Methods Mol Biol; 2021; 2186():3-10. PubMed ID: 32918725 [TBL] [Abstract][Full Text] [Related]
5. Alpha-Helical Fragaceatoxin C Nanopore Engineered for Double-Stranded and Single-Stranded Nucleic Acid Analysis. Wloka C; Mutter NL; Soskine M; Maglia G Angew Chem Int Ed Engl; 2016 Sep; 55(40):12494-8. PubMed ID: 27608188 [TBL] [Abstract][Full Text] [Related]
6. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. Restrepo-Pérez L; Huang G; Bohländer PR; Worp N; Eelkema R; Maglia G; Joo C; Dekker C ACS Nano; 2019 Dec; 13(12):13668-13676. PubMed ID: 31536327 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
8. Reversible Photocontrolled Nanopore Assembly. Mutter NL; Volarić J; Szymanski W; Feringa BL; Maglia G J Am Chem Soc; 2019 Sep; 141(36):14356-14363. PubMed ID: 31469268 [TBL] [Abstract][Full Text] [Related]
9. Protein identification by nanopore peptide profiling. Lucas FLR; Versloot RCA; Yakovlieva L; Walvoort MTC; Maglia G Nat Commun; 2021 Oct; 12(1):5795. PubMed ID: 34608150 [TBL] [Abstract][Full Text] [Related]
10. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
11. Quantification of Protein Glycosylation Using Nanopores. Versloot RCA; Lucas FLR; Yakovlieva L; Tadema MJ; Zhang Y; Wood TM; Martin NI; Marrink SJ; Walvoort MTC; Maglia G Nano Lett; 2022 Jul; 22(13):5357-5364. PubMed ID: 35766994 [TBL] [Abstract][Full Text] [Related]
13. Single-Molecule Dynamics and Discrimination between Hydrophilic and Hydrophobic Amino Acids in Peptides, through Controllable, Stepwise Translocation across Nanopores. Asandei A; Dragomir IS; Di Muccio G; Chinappi M; Park Y; Luchian T Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960810 [TBL] [Abstract][Full Text] [Related]
14. Single-Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. Hu F; Angelov B; Li S; Li N; Lin X; Zou A Chembiochem; 2020 Sep; 21(17):2467-2473. PubMed ID: 32274877 [TBL] [Abstract][Full Text] [Related]
15. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH. Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739 [TBL] [Abstract][Full Text] [Related]
16. Electroosmotic Sensing of Uncharged Peptides and Differentiating Their Phosphorylated States Using Nanopores. Si W; Chen J; Zhang Z; Wu G; Zhao J; Sha J Chemphyschem; 2024 Aug; 25(15):e202400281. PubMed ID: 38686913 [TBL] [Abstract][Full Text] [Related]
17. Mechanical Trapping of DNA in a Double-Nanopore System. Pud S; Chao SH; Belkin M; Verschueren D; Huijben T; van Engelenburg C; Dekker C; Aksimentiev A Nano Lett; 2016 Dec; 16(12):8021-8028. PubMed ID: 27960493 [TBL] [Abstract][Full Text] [Related]
18. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides. Asandei A; Rossini AE; Chinappi M; Park Y; Luchian T Langmuir; 2017 Dec; 33(50):14451-14459. PubMed ID: 29178796 [TBL] [Abstract][Full Text] [Related]
19. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Ouldali H; Sarthak K; Ensslen T; Piguet F; Manivet P; Pelta J; Behrends JC; Aksimentiev A; Oukhaled A Nat Biotechnol; 2020 Feb; 38(2):176-181. PubMed ID: 31844293 [TBL] [Abstract][Full Text] [Related]
20. Is the Volume Exclusion Model Practicable for Nanopore Protein Sequencing? Huo MZ; Li MY; Ying YL; Long YT Anal Chem; 2021 Aug; 93(33):11364-11369. PubMed ID: 34379401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]