These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34060843)

  • 1. Bubble Manipulation Driven by Alternating Current Electrowetting: Oscillation Modes and Surface Detachment.
    Sun Z; Zhuang L; Wei M; Sun H; Liu F; Tang B; Groenewold J; Zhou G
    Langmuir; 2021 Jun; 37(23):6898-6904. PubMed ID: 34060843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of a Nonconductive Droplet in an Aqueous Fluid with AC Electric Fields: Droplet Dewetting, Oscillation, and Detachment.
    Wang Q; Li L; Gu J; Zhang C; Lyu J; Yao W
    Langmuir; 2021 Oct; 37(41):12098-12111. PubMed ID: 34519514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actuation of a Nonconductive Droplet in an Aqueous Fluid by Reversed Electrowetting Effect.
    Wang Q; Xu M; Wang C; Gu J; Hu N; Lyu J; Yao W
    Langmuir; 2020 Jul; 36(28):8152-8164. PubMed ID: 32571027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting.
    Lee J; Park JK; Hong J; Lee SJ; Kang KH; Hwang HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033017. PubMed ID: 25314539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activating Bubble's Escape, Coalescence, and Departure under an Electric Field Effect.
    Yan R; Pham R; Chen CL
    Langmuir; 2020 Dec; 36(51):15558-15571. PubMed ID: 33332129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
    Xi X; Cegla F; Mettin R; Holsteyns F; Lippert A
    J Acoust Soc Am; 2014 Apr; 135(4):1731-41. PubMed ID: 25234973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Beetles in Nature to the Laboratory: Actuating Underwater Locomotion on Hydrophobic Surfaces.
    Pinchasik BE; Steinkühler J; Wuytens P; Skirtach AG; Fratzl P; Möhwald H
    Langmuir; 2015 Dec; 31(51):13734-42. PubMed ID: 26633751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics.
    Kothandaraman A; Harker A; Ventikos Y; Edirisinghe M
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear oscillation and acoustic scattering of bubbles.
    Ma Y; Zhao F
    Ultrason Sonochem; 2021 Jun; 74():105573. PubMed ID: 33940397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detachment Behavior of Single-Curved/NonCurved Particles from Ultrasound-Assisted Oscillation Bubbles.
    Ma G; Xia W
    ACS Omega; 2020 Feb; 5(6):2718-2724. PubMed ID: 32095695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles.
    Zhao Y; Cho SK
    Lab Chip; 2007 Feb; 7(2):273-80. PubMed ID: 17268631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble formation on a submerged micronozzle.
    Vafaei S; Wen D
    J Colloid Interface Sci; 2010 Mar; 343(1):291-7. PubMed ID: 20038468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of particles in multiphase processes: Particles on bubble surfaces.
    Bournival G; Ata S; Wanless EJ
    Adv Colloid Interface Sci; 2015 Nov; 225():114-33. PubMed ID: 26344866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-frequency acoustic technique for bubble resonant oscillation studies.
    Ohsaka K; Trinh EH
    J Acoust Soc Am; 2000 Mar; 107(3):1346-51. PubMed ID: 10738788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regimes of bubble volume oscillations in a pipe.
    Jeurissen R; Wijshoff H; van den Berg M; Reinten H; Lohse D
    J Acoust Soc Am; 2011 Nov; 130(5):3220-32. PubMed ID: 22087994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of single bubble dynamics under acoustic standing waves.
    Qiu S; Ma X; Huang B; Li D; Wang G; Zhang M
    Ultrason Sonochem; 2018 Dec; 49():196-205. PubMed ID: 30174251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights into the Role of Surface Nanobubbles in Bubble-Particle Detachment.
    Ding S; Xing Y; Zheng X; Zhang Y; Cao Y; Gui X
    Langmuir; 2020 Apr; 36(16):4339-4346. PubMed ID: 32237714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of Electrowetting-Induced Droplet Detachment: A Study of Droplet Oscillations on Solid Surfaces.
    Theodorou NT; Sourais AG; Papathanasiou AG
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape Oscillation of a drop in ac electrowetting.
    Oh JM; Ko SH; Kang KH
    Langmuir; 2008 Aug; 24(15):8379-86. PubMed ID: 18582134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.