These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium. Sheth AI; Althoff MJ; Tolison H; Engel K; Amaya ML; Krug AE; Young TN; Minhajuddin M; Pei S; Patel SB; Winters A; Miller R; Shelton IT; St-Germain J; Ling T; Jones CL; Raught B; Gillen AE; Ransom M; Staggs S; Smith CA; Pollyea DA; Stevens BM; Jordan CT Cancer Discov; 2024 Oct; 14(10):1922-1939. PubMed ID: 38787341 [TBL] [Abstract][Full Text] [Related]
3. Targeting mitochondrial respiration for the treatment of acute myeloid leukemia. Carter JL; Hege K; Kalpage HA; Edwards H; Hüttemann M; Taub JW; Ge Y Biochem Pharmacol; 2020 Dec; 182():114253. PubMed ID: 33011159 [TBL] [Abstract][Full Text] [Related]
4. Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment. Chen X; Glytsou C; Zhou H; Narang S; Reyna DE; Lopez A; Sakellaropoulos T; Gong Y; Kloetgen A; Yap YS; Wang E; Gavathiotis E; Tsirigos A; Tibes R; Aifantis I Cancer Discov; 2019 Jul; 9(7):890-909. PubMed ID: 31048321 [TBL] [Abstract][Full Text] [Related]
5. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471 [TBL] [Abstract][Full Text] [Related]
6. Extinguishing the Embers: Targeting AML Metabolism. Culp-Hill R; D'Alessandro A; Pietras EM Trends Mol Med; 2021 Apr; 27(4):332-344. PubMed ID: 33121874 [TBL] [Abstract][Full Text] [Related]
7. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Bruserud Ø; Selheim F; Hernandez-Valladares M; Reikvam H Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928061 [TBL] [Abstract][Full Text] [Related]
8. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Pollyea DA; Stevens BM; Jones CL; Winters A; Pei S; Minhajuddin M; D'Alessandro A; Culp-Hill R; Riemondy KA; Gillen AE; Hesselberth JR; Abbott D; Schatz D; Gutman JA; Purev E; Smith C; Jordan CT Nat Med; 2018 Dec; 24(12):1859-1866. PubMed ID: 30420752 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. de Beauchamp L; Himonas E; Helgason GV Leukemia; 2022 Jan; 36(1):1-12. PubMed ID: 34561557 [TBL] [Abstract][Full Text] [Related]
10. Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia. Hege Hurrish K; Qiao X; Li X; Su Y; Carter J; Ma J; Kalpage HA; Hüttemann M; Edwards H; Wang G; Kim S; Dombkowski A; Bao X; Li J; Taub JW; Ge Y Biochem Pharmacol; 2022 Nov; 205():115283. PubMed ID: 36208684 [TBL] [Abstract][Full Text] [Related]
11. Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia. Del Poeta G; Bruno A; Del Principe MI; Venditti A; Maurillo L; Buccisano F; Stasi R; Neri B; Luciano F; Siniscalchi A; de Fabritiis P; Amadori S Curr Cancer Drug Targets; 2008 May; 8(3):207-22. PubMed ID: 18473734 [TBL] [Abstract][Full Text] [Related]
12. Advances in pathogenesis research and challenges in treatment development for acute myeloid leukemia. Yamaguchi H Int J Hematol; 2024 Oct; 120(4):414-416. PubMed ID: 39225969 [TBL] [Abstract][Full Text] [Related]
13. Targeting Apoptosis in Acute Myeloid Leukemia: Current Status and Future Directions of BCL-2 Inhibition with Venetoclax and Beyond. Choi JH; Bogenberger JM; Tibes R Target Oncol; 2020 Apr; 15(2):147-162. PubMed ID: 32319019 [TBL] [Abstract][Full Text] [Related]
16. [Identification of GPAT1-dependent mitochondrial metabolism as a novel therapeutic target for AML]. Irifune H Rinsho Ketsueki; 2022; 63(5):353-362. PubMed ID: 35662157 [TBL] [Abstract][Full Text] [Related]
17. Shutting Down Acute Myeloid Leukemia and Myelodysplastic Syndrome with BCL-2 Family Protein Inhibition. Sharma P; Pollyea DA Curr Hematol Malig Rep; 2018 Aug; 13(4):256-264. PubMed ID: 29982865 [TBL] [Abstract][Full Text] [Related]
18. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism. Polak A; Bialopiotrowicz E; Krzymieniewska B; Wozniak J; Stojak M; Cybulska M; Kaniuga E; Mikula M; Jablonska E; Gorniak P; Noyszewska-Kania M; Szydlowski M; Piechna K; Piwocka K; Bugajski L; Lech-Maranda E; Barankiewicz J; Kolkowska-Lesniak A; Patkowska E; Glodkowska-Mrowka E; Baran N; Juszczynski P Cell Death Dis; 2020 Nov; 11(11):956. PubMed ID: 33159047 [TBL] [Abstract][Full Text] [Related]
19. Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Saito K; Zhang Q; Yang H; Yamatani K; Ai T; Ruvolo V; Baran N; Cai T; Ma H; Jacamo R; Kuruvilla V; Imoto J; Kinjo S; Ikeo K; Moriya K; Suzuki K; Miida T; Kim YM; Vellano CP; Andreeff M; Marszalek JR; Tabe Y; Konopleva M Blood Adv; 2021 Oct; 5(20):4233-4255. PubMed ID: 34507353 [TBL] [Abstract][Full Text] [Related]
20. Can we selectively target AML stem cells? Jordan CT Best Pract Res Clin Haematol; 2019 Dec; 32(4):101100. PubMed ID: 31779978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]