These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 34061067)
1. Breaking the symmetry to structure light. Khonina SN; Golub I Opt Lett; 2021 Jun; 46(11):2605-2608. PubMed ID: 34061067 [TBL] [Abstract][Full Text] [Related]
2. Vectorial spin Hall effect of light upon tight focusing. Khonina SN; Golub I Opt Lett; 2022 May; 47(9):2166-2169. PubMed ID: 35486751 [TBL] [Abstract][Full Text] [Related]
3. Divide and focus: generating novel focal polarization modalities by symmetry-based phase tailoring in one dimension. Bauer T; Golub I Opt Lett; 2023 May; 48(10):2736-2739. PubMed ID: 37186753 [TBL] [Abstract][Full Text] [Related]
4. Tight focusing of the vector optical field with polarization varying along complex curves of the Poincaré sphere. Lü JQ; Li JS; Guo JX; Zheng LF; Liu S Appl Opt; 2024 Apr; 63(10):2683-2688. PubMed ID: 38568552 [TBL] [Abstract][Full Text] [Related]
5. Spin-orbit Hall effect in the tight focusing of a radially polarized vortex beam. Li H; Ma C; Wang J; Tang M; Li X Opt Express; 2021 Nov; 29(24):39419-39427. PubMed ID: 34809307 [TBL] [Abstract][Full Text] [Related]
6. Transverse angular momentum and transverse barycenter shift of a focused light field due to nonuniform input angular momentum. Zhu W; She W Opt Lett; 2014 Mar; 39(6):1337-40. PubMed ID: 24690781 [TBL] [Abstract][Full Text] [Related]
7. Understanding of transverse spin angular momentum in tightly focused linearly polarized vortex beams. Zhang X; Shen B; Zhu Z; Rui G; He J; Cui Y; Gu B Opt Express; 2022 Feb; 30(4):5121-5130. PubMed ID: 35209481 [TBL] [Abstract][Full Text] [Related]
8. Spin-Orbital Conversion with the Tight Focus of an Axial Superposition of a High-Order Cylindrical Vector Beam and a Beam with Linear Polarization. Kotlyar V; Stafeev S; Zaitsev V; Kozlova E Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888930 [TBL] [Abstract][Full Text] [Related]
9. Manipulation of optical orbit-induced localized spin angular momentum using the periodic edge dislocation. Liu F; Song J; Zhang N; Tong X; Sun M; Cao B; Huang K; Zhang X; Lu X Opt Express; 2024 Mar; 32(6):9867-9876. PubMed ID: 38571211 [TBL] [Abstract][Full Text] [Related]
10. Spin-Orbital Conversion of a Strongly Focused Light Wave with High-Order Cylindrical-Circular Polarization. Kotlyar VV; Stafeev SS; Kozlova ES; Nalimov AG Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640744 [TBL] [Abstract][Full Text] [Related]
11. Shaping focal field by grafted polarization. Ma C; Song T; Chen R; Li H; Li X Opt Express; 2023 Feb; 31(5):8120-8127. PubMed ID: 36859928 [TBL] [Abstract][Full Text] [Related]
12. Orbital angular momentum density characteristics of tightly focused polarized Laguerre-Gaussian beam. Zhao Y; Yao Y; Xu X; Xu K; Yang Y; Tian J Appl Opt; 2020 Aug; 59(24):7396-7407. PubMed ID: 32902508 [TBL] [Abstract][Full Text] [Related]
13. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam. Zhao Y; Shapiro D; McGloin D; Chiu DT; Marchesini S Opt Express; 2009 Dec; 17(25):23316-22. PubMed ID: 20052258 [TBL] [Abstract][Full Text] [Related]
14. Symmetry of electric spin angular momentum density in the tight focusing of linearly polarized vortex beams. Hang L; Wang Y; Chen P J Opt Soc Am A Opt Image Sci Vis; 2019 Aug; 36(8):1374-1378. PubMed ID: 31503563 [TBL] [Abstract][Full Text] [Related]
15. Optimization of focusing of linearly polarized light. Khonina SN; Golub I Opt Lett; 2011 Feb; 36(3):352-4. PubMed ID: 21283187 [TBL] [Abstract][Full Text] [Related]
16. Optical Polarization Möbius Strips and Points of Purely Transverse Spin Density. Bauer T; Neugebauer M; Leuchs G; Banzer P Phys Rev Lett; 2016 Jul; 117(1):013601. PubMed ID: 27419567 [TBL] [Abstract][Full Text] [Related]
17. Generation of pure longitudinal magnetization focal spot with a triplex metalens. Zhao K; Zhang Z; Zang H; Du J; Lu Y; Wang P Opt Lett; 2021 Apr; 46(8):1896-1899. PubMed ID: 33857098 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous symmetry breaking in persistent currents of spinor polaritons. Sedov E; Arakelian S; Kavokin A Sci Rep; 2021 Nov; 11(1):22382. PubMed ID: 34789817 [TBL] [Abstract][Full Text] [Related]
19. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures. Khonina SN; Volotovsky SG J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2188-97. PubMed ID: 20922009 [TBL] [Abstract][Full Text] [Related]
20. Electro-optical coupling of a circular Airy beam in a uniaxial crystal. Zheng G; Xu S; Wu Q; Wang Q; Ouyang Z Opt Express; 2017 Jun; 25(13):14654-14667. PubMed ID: 28789049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]