These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34061087)

  • 1. Hybridization of circular and rectangular transverse profiles of nanophotonic modes for nonlinear optics.
    Lu X; Jiang WC; Srinivasan K
    Opt Lett; 2021 Jun; 46(11):2682-2685. PubMed ID: 34061087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide.
    Pan A; Hu C; Zeng C; Xia J
    Opt Express; 2019 Nov; 27(24):35659-35669. PubMed ID: 31878734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators.
    Roland I; Zeng Y; Checoury X; El Kurdi M; Sauvage S; Brimont C; Guillet T; Gayral B; Gromovyi M; Duboz JY; Semond F; de Micheli MP; Boucaud P
    Opt Express; 2016 May; 24(9):9602-10. PubMed ID: 27137573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable frequency matching for efficient four-wave-mixing Bragg scattering in microrings.
    Liu J; Zheng Q; Xia G; Wu C; Zhu Z; Xu P
    Opt Express; 2021 Oct; 29(22):36038-36047. PubMed ID: 34809024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonic generation in silicon nitride ring resonators.
    Levy JS; Foster MA; Gaeta AL; Lipson M
    Opt Express; 2011 Jun; 19(12):11415-21. PubMed ID: 21716372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient, broadband third-harmonic generation in silicon nanophotonic waveguides spectrally shaped by nonlinear propagation.
    Sederberg S; Firby CJ; Elezzabi AY
    Opt Express; 2019 Feb; 27(4):4990-5004. PubMed ID: 30876106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode-selective coupling between few-mode fibers and buried channel waveguides.
    Wu Y; Chiang KS
    Opt Express; 2016 Dec; 24(26):30108-30123. PubMed ID: 28059289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode control and mode conversion in nonlinear aluminum nitride waveguides.
    Stegmaier M; Pernice WH
    Opt Express; 2013 Nov; 21(22):26742-61. PubMed ID: 24216896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities.
    Puckett MW; Sharma R; Lin HH; Yang MH; Vallini F; Fainman Y
    Opt Express; 2016 Jul; 24(15):16923-33. PubMed ID: 27464144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics.
    Jágerská J; Le Thomas N; Houdré R; Bolten J; Moormann C; Wahlbrink T; Ctyroký J; Waldow M; Först M
    Opt Lett; 2007 Sep; 32(18):2723-5. PubMed ID: 17873948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale observation of waveguide modes enhancing the efficiency of solar cells.
    Paetzold UW; Lehnen S; Bittkau K; Rau U; Carius R
    Nano Lett; 2014 Nov; 14(11):6599-605. PubMed ID: 25350265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators.
    Liu X; Sun C; Xiong B; Wang L; Wang J; Han Y; Hao Z; Li H; Luo Y; Yan J; Wei T; Zhang Y; Wang J
    Opt Express; 2017 Jan; 25(2):587-594. PubMed ID: 28157948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy concentration at the center of large aspect ratio rectangular waveguides at high frequencies.
    Cegla FB
    J Acoust Soc Am; 2008 Jun; 123(6):4218-26. PubMed ID: 18537373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of Ultra-High-Q Silicon Microring Resonators for Nonlinear Integrated Photonics.
    Zeng D; Liu Q; Mei C; Li H; Huang Q; Zhang X
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of V-groove silicon nitride trench waveguides.
    Zhao Q; Huang Y; Boyraz O
    J Opt Soc Am A Opt Image Sci Vis; 2016 Sep; 33(9):1851-9. PubMed ID: 27607510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.
    Monat C; Grillet C; Corcoran B; Moss DJ; Eggleton BJ; White TP; Krauss TF
    Opt Express; 2010 Mar; 18(7):6831-40. PubMed ID: 20389702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient telecom-to-visible spectral translation through ultra-low power nonlinear nanophotonics.
    Lu X; Moille G; Li Q; Westly DA; Singh A; Rao A; Yu SP; Briles TC; Papp SB; Srinivasan K
    Nat Photonics; 2019; 13(9):. PubMed ID: 38567245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation Rules and Dynamics of Photoinduced χ
    Nitiss E; Liu T; Grassani D; Pfeiffer M; Kippenberg TJ; Brès CS
    ACS Photonics; 2020 Jan; 7(1):147-153. PubMed ID: 32030349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved broadband dispersion engineering in coupled silicon nitride waveguides with a partially etched gap.
    Yao Z; Wan Y; Bu R; Zheng Z
    Appl Opt; 2019 Oct; 58(29):8007-8012. PubMed ID: 31674354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent Visible-Light-Generation Enhancement in Silicon-Based Nanoplasmonic Waveguides via Third-Harmonic Conversion.
    Sederberg S; Elezzabi AY
    Phys Rev Lett; 2015 Jun; 114(22):227401. PubMed ID: 26196643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.