These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 34061237)

  • 1. Development of urban air monitoring with high spatial resolution using mobile vehicle sensors.
    Yeom K
    Environ Monit Assess; 2021 Jun; 193(6):375. PubMed ID: 34061237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Cost Sensor System Installed in Buses to Monitor Air Quality in Cities.
    Correia C; Martins V; Matroca B; Santana P; Mariano P; Almeida A; Almeida SM
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urban Air Pollution Mapping Using Fleet Vehicles as Mobile Monitors and Machine Learning.
    Zhao B; Yu L; Wang C; Shuai C; Zhu J; Qu S; Taiebat M; Xu M
    Environ Sci Technol; 2021 Apr; 55(8):5579-5588. PubMed ID: 33760594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data fusion for air quality mapping using low-cost sensor observations: Feasibility and added-value.
    Gressent A; Malherbe L; Colette A; Rollin H; Scimia R
    Environ Int; 2020 Oct; 143():105965. PubMed ID: 32688160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments.
    Van Poppel M; Peters J; Bleux N
    Environ Pollut; 2013 Dec; 183():224-33. PubMed ID: 23545013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a low-cost sensing platform for air quality monitoring: application in the city of Rome.
    Shindler L
    Environ Technol; 2021 Jan; 42(4):618-631. PubMed ID: 31291821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Urban Air Pollution Detection Systems.
    Shakhov V; Materukhin A; Sokolova O; Koo I
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring street-level spatial-temporal variations of carbon monoxide in urban settings using a wireless sensor network (WSN) framework.
    Wen TH; Jiang JA; Sun CH; Juang JY; Lin TS
    Int J Environ Res Public Health; 2013 Nov; 10(12):6380-96. PubMed ID: 24287859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring.
    Cozma A; Firculescu AC; Tudose D; Ruse L
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of ozone and particulate matter sensors.
    DeWitt HL; Crow WL; Flowers B
    J Air Waste Manag Assoc; 2020 Mar; 70(3):292-306. PubMed ID: 31961265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, calibration, and testing of a mobile sensor system for air pollution and built environment data collection: The urban scanner platform.
    Ganji A; Youssefi O; Xu J; Mallinen K; Lloyd M; Wang A; Bakhtari A; Weichenthal S; Hatzopoulou M
    Environ Pollut; 2023 Jan; 317():120720. PubMed ID: 36442817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The improvement of spatial-temporal resolution of PM
    Lin YC; Chi WJ; Lin YQ
    Environ Int; 2020 Jan; 134():105305. PubMed ID: 31739136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities-a case study in Sheffield.
    Munir S; Mayfield M; Coca D; Jubb SA; Osammor O
    Environ Monit Assess; 2019 Jan; 191(2):94. PubMed ID: 30671683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantages and challenges of the implementation of a low-cost particulate matter monitoring system as a decision-making tool.
    Caquilpán P V; Aros G G; Elgueta A S; Díaz S R; Sepúlveda K G; Sierralta J C
    Environ Monit Assess; 2019 Oct; 191(11):667. PubMed ID: 31650385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing spatial variations of city-wide elevated PM
    Yu YT; Xiang S; Li R; Zhang S; Zhang KM; Si S; Wu X; Wu Y
    Sci Total Environ; 2022 Jul; 829():154478. PubMed ID: 35283133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal characteristics of nitrogen dioxide pollution in mainland China from 2015 to 2018.
    Chen X; Han X; Li J
    Environ Monit Assess; 2021 Apr; 193(5):313. PubMed ID: 33914181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.