BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34061713)

  • 1. Application of ANN and SVM for prediction nutrients in rivers.
    Stamenković LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(8):867-873. PubMed ID: 34061713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.
    Ji X; Shang X; Dahlgren RA; Zhang M
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16062-16076. PubMed ID: 28537025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods.
    Najafzadeh M; Ghaemi A
    Environ Monit Assess; 2019 May; 191(6):380. PubMed ID: 31104155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient strategy for predicting river dissolved oxygen concentration: application of deep recurrent neural network model.
    Moghadam SV; Sharafati A; Feizi H; Marjaie SMS; Asadollah SBHS; Motta D
    Environ Monit Assess; 2021 Nov; 193(12):798. PubMed ID: 34773156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of 5-day biochemical oxygen demand in the Buriganga River of Bangladesh using novel hybrid machine learning algorithms.
    Nafsin N; Li J
    Water Environ Res; 2022 May; 94(5):e10718. PubMed ID: 35502725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia.
    Wong YJ; Shimizu Y; Kamiya A; Maneechot L; Bharambe KP; Fong CS; Nik Sulaiman NM
    Environ Monit Assess; 2021 Jun; 193(7):438. PubMed ID: 34159431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study.
    Almansour NA; Syed HF; Khayat NR; Altheeb RK; Juri RE; Alhiyafi J; Alrashed S; Olatunji SO
    Comput Biol Med; 2019 Jun; 109():101-111. PubMed ID: 31054385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic properties and its application in the prediction of potentially toxic elements in aquatic products by machine learning.
    Li X; Yang B; Yang J; Fan Y; Qian X; Li H
    Sci Total Environ; 2021 Aug; 783():147083. PubMed ID: 34088131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction mapping of human leptospirosis using ANN, GWR, SVM and GLM approaches.
    Mohammadinia A; Saeidian B; Pradhan B; Ghaemi Z
    BMC Infect Dis; 2019 Nov; 19(1):971. PubMed ID: 31722676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models.
    Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T
    Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a deep convolutional network to predict the longitudinal dispersion coefficient.
    Ghiasi B; Jodeiri A; Andik B
    J Contam Hydrol; 2021 Jun; 240():103798. PubMed ID: 33770526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.
    Komasi M; Sharghi S
    Water Sci Technol; 2016; 73(8):1937-53. PubMed ID: 27120649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and Secure Data Transmission Using Artificial Intelligence Techniques in Ad-Hoc Networks.
    Rani P; Kavita ; Verma S; Kaur N; Wozniak M; Shafi J; Ijaz MF
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35274628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration.
    Band SS; Janizadeh S; Pal SC; Chowdhuri I; Siabi Z; Norouzi A; Melesse AM; Shokri M; Mosavi A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of survival predictions for rats with hemorrhagic shocks using an artificial neural network and support vector machine.
    Jang KH; Yoo TK; Choi JY; Nam KC; Choi JL; Kwon MK; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():91-4. PubMed ID: 22254258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
    Cai B; Jiang X
    J Biomed Inform; 2014 Apr; 48():114-21. PubMed ID: 24361387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea.
    Park Y; Cho KH; Park J; Cha SM; Kim JH
    Sci Total Environ; 2015 Jan; 502():31-41. PubMed ID: 25241206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.