These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34061835)

  • 1. The visual cortex produces gamma band echo in response to broadband visual flicker.
    Zhigalov A; Duecker K; Jensen O
    PLoS Comput Biol; 2021 Jun; 17(6):e1009046. PubMed ID: 34061835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No Evidence for Entrainment: Endogenous Gamma Oscillations and Rhythmic Flicker Responses Coexist in Visual Cortex.
    Duecker K; Gutteling TP; Herrmann CS; Jensen O
    J Neurosci; 2021 Aug; 41(31):6684-6698. PubMed ID: 34230106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FEF-Controlled Alpha Delay Activity Precedes Stimulus-Induced Gamma-Band Activity in Visual Cortex.
    Popov T; Kastner S; Jensen O
    J Neurosci; 2017 Apr; 37(15):4117-4127. PubMed ID: 28314817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of MEG responses to the sinusoidal flicker and the envelope of amplitude-modulated flicker.
    Okamoto Y; Nakagawa S
    Neurosci Lett; 2011 Jan; 487(2):207-10. PubMed ID: 20969920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A time-variant processing approach for the analysis of alpha and gamma MEG oscillations during flicker stimulus generated entrainment.
    Wacker M; Galicki M; Putsche P; Milde T; Schwab K; Haueisen J; Ligges C; Witte H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3069-77. PubMed ID: 21712153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal gamma-band entrainment of visual cortex.
    Petro NM; Webert LK; Springer SD; Okelberry HJ; John JA; Horne LK; Glesinger R; Rempe MP; Wilson TW
    Hum Brain Mapp; 2024 Jul; 45(10):e26775. PubMed ID: 38970249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance.
    Herring JD; Esterer S; Marshall TR; Jensen O; Bergmann TO
    Neuroimage; 2019 Jan; 184():440-449. PubMed ID: 30243972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention differentially modulates the amplitude of resonance frequencies in the visual cortex.
    Gulbinaite R; Roozendaal DHM; VanRullen R
    Neuroimage; 2019 Dec; 203():116146. PubMed ID: 31493535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is gamma-band activity in the local field potential of V1 cortex a "clock" or filtered noise?
    Burns SP; Xing D; Shapley RM
    J Neurosci; 2011 Jun; 31(26):9658-64. PubMed ID: 21715631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli.
    Swettenham JB; Muthukumaraswamy SD; Singh KD
    J Neurophysiol; 2009 Aug; 102(2):1241-53. PubMed ID: 19515947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size.
    Perry G; Hamandi K; Brindley LM; Muthukumaraswamy SD; Singh KD
    Neuroimage; 2013 Mar; 68():83-92. PubMed ID: 23220427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus-specific plasticity in human visual gamma-band activity and functional connectivity.
    Stauch BJ; Peter A; Schuler H; Fries P
    Elife; 2021 Aug; 10():. PubMed ID: 34473058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations.
    Friedman-Hill S; Maldonado PE; Gray CM
    Cereb Cortex; 2000 Nov; 10(11):1105-16. PubMed ID: 11053231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion Coherence and Luminance Contrast Interact in Driving Visual Gamma-Band Activity.
    Pellegrini F; Hawellek DJ; Pape AA; Hipp JF; Siegel M
    Cereb Cortex; 2021 Feb; 31(3):1622-1631. PubMed ID: 33145595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.
    Chang AY; Schwartzman DJ; VanRullen R; Kanai R; Seth AK
    J Neurosci; 2017 Aug; 37(35):8486-8497. PubMed ID: 28765331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of AMPA blockade on the spectral profile of human early visual cortex recordings studied with non-invasive MEG.
    Muthukumaraswamy SD; Routley B; Droog W; Singh KD; Hamandi K
    Cortex; 2016 Aug; 81():266-75. PubMed ID: 27209006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Visual Cortex Responses to Rapid Cone and Melanopsin-Directed Flicker.
    Spitschan M; Datta R; Stern AM; Brainard DH; Aguirre GK
    J Neurosci; 2016 Feb; 36(5):1471-82. PubMed ID: 26843631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus Dependence of Gamma Oscillations in Human Visual Cortex.
    Hermes D; Miller KJ; Wandell BA; Winawer J
    Cereb Cortex; 2015 Sep; 25(9):2951-9. PubMed ID: 24855114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of cat visual cortex to flicker stimuli of variable frequency.
    Rager G; Singer W
    Eur J Neurosci; 1998 May; 10(5):1856-77. PubMed ID: 9751156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.