These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34061835)

  • 21. Neurofeedback training of gamma band oscillations improves perceptual processing.
    Salari N; Büchel C; Rose M
    Exp Brain Res; 2014 Oct; 232(10):3353-61. PubMed ID: 24992898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of head modeling and sensor types in localizing human gamma-band oscillations.
    Mideksa KG; Hoogenboom N; Hellriegel H; Krause H; Schnitzler A; Deuschl G; Raethjen J; Heute U; Muthuraman M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2217-20. PubMed ID: 25570427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gamma oscillations and photosensitive epilepsy.
    Hermes D; Kasteleijn-Nolst Trenité DGA; Winawer J
    Curr Biol; 2017 May; 27(9):R336-R338. PubMed ID: 28486114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute effects of alcohol on stimulus-induced gamma oscillations in human primary visual and motor cortices.
    Campbell AE; Sumner P; Singh KD; Muthukumaraswamy SD
    Neuropsychopharmacology; 2014 Aug; 39(9):2104-13. PubMed ID: 24622470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical flicker frequency responses in visual cortex.
    Wells EF; Bernstein GM; Scott BW; Bennett PJ; Mendelson JR
    Exp Brain Res; 2001 Jul; 139(1):106-10. PubMed ID: 11482836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency.
    Kahlbrock N; Butz M; May ES; Brenner M; Kircheis G; Häussinger D; Schnitzler A
    Neuroimage; 2012 May; 61(1):216-27. PubMed ID: 22405731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.
    Gulbinaite R; van Viegen T; Wieling M; Cohen MX; VanRullen R
    J Neurosci; 2017 Oct; 37(42):10173-10184. PubMed ID: 28931569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The frequency of visually induced γ-band oscillations depends on the size of early human visual cortex.
    Schwarzkopf DS; Robertson DJ; Song C; Barnes GR; Rees G
    J Neurosci; 2012 Jan; 32(4):1507-12. PubMed ID: 22279235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing cortical excitability using rapid frequency tagging.
    Zhigalov A; Herring JD; Herpers J; Bergmann TO; Jensen O
    Neuroimage; 2019 Jul; 195():59-66. PubMed ID: 30930309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retino-cortical stimulus frequency-dependent gamma coupling: evidence and functional implications of oscillatory potentials.
    Todorov MI; Kékesi KA; Borhegyi Z; Galambos R; Juhász G; Hudetz AG
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27702884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.
    Bastos AM; Briggs F; Alitto HJ; Mangun GR; Usrey WM
    J Neurosci; 2014 May; 34(22):7639-44. PubMed ID: 24872567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the relationship between cortical excitability and visual oscillatory responses - A concurrent tDCS-MEG study.
    Marshall TR; Esterer S; Herring JD; Bergmann TO; Jensen O
    Neuroimage; 2016 Oct; 140():41-9. PubMed ID: 26455793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LFP power spectra in V1 cortex: the graded effect of stimulus contrast.
    Henrie JA; Shapley R
    J Neurophysiol; 2005 Jul; 94(1):479-90. PubMed ID: 15703230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal parameters for rapid (invisible) frequency tagging using MEG.
    Minarik T; Berger B; Jensen O
    Neuroimage; 2023 Nov; 281():120389. PubMed ID: 37751812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perceptual echoes at 10 Hz in the human brain.
    VanRullen R; Macdonald JS
    Curr Biol; 2012 Jun; 22(11):995-9. PubMed ID: 22560609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.
    Merkel N; Wibral M; Bland G; Singer W
    Hum Brain Mapp; 2018 Sep; 39(9):3487-3502. PubMed ID: 29700906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex.
    Orekhova EV; Sysoeva OV; Schneiderman JF; Lundström S; Galuta IA; Goiaeva DE; Prokofyev AO; Riaz B; Keeler C; Hadjikhani N; Gillberg C; Stroganova TA
    Sci Rep; 2018 May; 8(1):8451. PubMed ID: 29855596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A non-invasive, quantitative study of broadband spectral responses in human visual cortex.
    Kupers ER; Wang HX; Amano K; Kay KN; Heeger DJ; Winawer J
    PLoS One; 2018; 13(3):e0193107. PubMed ID: 29529085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptual priming leads to reduction of gamma frequency oscillations.
    Moldakarimov S; Bazhenov M; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5640-5. PubMed ID: 20212165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MEG sensor and source measures of visually induced gamma-band oscillations are highly reliable.
    Tan HM; Gross J; Uhlhaas PJ
    Neuroimage; 2016 Aug; 137():34-44. PubMed ID: 27153980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.