These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34061835)

  • 41. Frequency modulation of neural oscillations according to visual task demands.
    Wutz A; Melcher D; Samaha J
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1346-1351. PubMed ID: 29358390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Connecting occipital alpha band peak frequency, visual temporal resolution, and occipital GABA levels in healthy participants and hepatic encephalopathy patients.
    Baumgarten TJ; Neugebauer J; Oeltzschner G; Füllenbach ND; Kircheis G; Häussinger D; Lange J; Wittsack HJ; Butz M; Schnitzler A
    Neuroimage Clin; 2018; 20():347-356. PubMed ID: 30109194
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Early Development of Network Oscillations in the Ferret Visual Cortex.
    Li Y; Yu C; Zhou ZC; Stitt I; Sellers KK; Gilmore JH; Frohlich F
    Sci Rep; 2017 Dec; 7(1):17766. PubMed ID: 29259184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Can the causal role of brain oscillations be studied through rhythmic brain stimulation?
    Lobo T; Brookes MJ; Bauer M
    J Vis; 2021 Nov; 21(12):2. PubMed ID: 34727165
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.
    Sellers KK; Bennett DV; Fröhlich F
    Brain Res; 2015 Feb; 1598():31-45. PubMed ID: 25498982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functionally Distinct Gamma Range Activity Revealed by Stimulus Tuning in Human Visual Cortex.
    Bartoli E; Bosking W; Chen Y; Li Y; Sheth SA; Beauchamp MS; Yoshor D; Foster BL
    Curr Biol; 2019 Oct; 29(20):3345-3358.e7. PubMed ID: 31588003
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clarifying frequency-dependent brightness enhancement: delta- and theta-band flicker, not alpha-band flicker, consistently seen as brightest.
    Bertrand JK; Ouellette Zuk AA; Chapman CS
    Exp Brain Res; 2019 Aug; 237(8):2061-2073. PubMed ID: 31172241
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perceptual echoes as travelling waves may arise from two discrete neuronal sources.
    Zhigalov A; Jensen O
    Neuroimage; 2023 May; 272():120047. PubMed ID: 37001836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. No evidence for widespread synchronized networks in binocular rivalry: MEG frequency tagging entrains primarily early visual cortex.
    Kamphuisen A; Bauer M; van Ee R
    J Vis; 2008 May; 8(5):4.1-8. PubMed ID: 18842075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduced BOLD response to periodic visual stimulation.
    Parkes LM; Fries P; Kerskens CM; Norris DG
    Neuroimage; 2004 Jan; 21(1):236-43. PubMed ID: 14741661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena.
    Herrmann CS
    Exp Brain Res; 2001 Apr; 137(3-4):346-53. PubMed ID: 11355381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flicker in the visual background impairs the ability to process a moving visual stimulus.
    Churan J; Ilg UJ
    Eur J Neurosci; 2002 Sep; 16(6):1151-62. PubMed ID: 12383245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sustained gamma band synchronization in early visual areas reflects the level of selective attention.
    Kahlbrock N; Butz M; May ES; Schnitzler A
    Neuroimage; 2012 Jan; 59(1):673-81. PubMed ID: 21784164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting.
    Zumer JM; Brookes MJ; Stevenson CM; Francis ST; Morris PG
    Neuroimage; 2010 Jan; 49(2):1479-89. PubMed ID: 19778617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laminar analysis of visually evoked activity in the primary visual cortex.
    Xing D; Yeh CI; Burns S; Shapley RM
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13871-6. PubMed ID: 22872866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stimulus repetition modulates gamma-band synchronization in primate visual cortex.
    Brunet NM; Bosman CA; Vinck M; Roberts M; Oostenveld R; Desimone R; De Weerd P; Fries P
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3626-31. PubMed ID: 24554080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.
    Lobier M; Palva JM; Palva S
    Neuroimage; 2018 Jan; 165():222-237. PubMed ID: 29074278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluating the feasibility of the steady-state visual evoked potential (SSVEP) to study temporal attention.
    Mora-Cortes A; Ridderinkhof KR; Cohen MX
    Psychophysiology; 2018 May; 55(5):e13029. PubMed ID: 29119621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial Attention Tunes Temporal Processing in Early Visual Cortex by Speeding and Slowing Alpha Oscillations.
    Sharp P; Gutteling T; Melcher D; Hickey C
    J Neurosci; 2022 Oct; 42(41):7824-7832. PubMed ID: 36100397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.