These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34062026)

  • 1. In Situ Synchrotron X-ray Diffraction Studies of the Mechanochemical Synthesis of ZnS from its Elements.
    Petersen H; Reichle S; Leiting S; Losch P; Kersten W; Rathmann T; Tseng J; Etter M; Schmidt W; Weidenthaler C
    Chemistry; 2021 Sep; 27(49):12558-12565. PubMed ID: 34062026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time
    Lukin S; Germann LS; Friščić T; Halasz I
    Acc Chem Res; 2022 May; 55(9):1262-1277. PubMed ID: 35446551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Synchrotron X-ray Diffraction Studies of the Mechanochemical Synthesis of ZnS from its Elements.
    Petersen H; Reichle S; Leiting S; Losch P; Kersten W; Rathmann T; Tseng J; Etter M; Schmidt W; Weidenthaler C
    Chemistry; 2021 Sep; 27(49):12451-12452. PubMed ID: 34263488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network.
    Chen X; Xu H; Xu N; Zhao F; Lin W; Lin G; Fu Y; Huang Z; Wang H; Wu M
    Inorg Chem; 2003 May; 42(9):3100-6. PubMed ID: 12716207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Monitoring of the Mechanosynthesis of the Archetypal Metal-Organic Framework HKUST-1: Effect of Liquid Additives on the Milling Reactivity.
    Stolar T; Batzdorf L; Lukin S; Žilić D; Motillo C; Friščić T; Emmerling F; Halasz I; Užarević K
    Inorg Chem; 2017 Jun; 56(11):6599-6608. PubMed ID: 28537382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time and in situ monitoring of mechanochemical milling reactions.
    Friščić T; Halasz I; Beldon PJ; Belenguer AM; Adams F; Kimber SA; Honkimäki V; Dinnebier RE
    Nat Chem; 2013 Jan; 5(1):66-73. PubMed ID: 23247180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists.
    Užarević K; Halasz I; Friščić T
    J Phys Chem Lett; 2015 Oct; 6(20):4129-40. PubMed ID: 26722788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction.
    Halasz I; Kimber SA; Beldon PJ; Belenguer AM; Adams F; Honkimäki V; Nightingale RC; Dinnebier RE; Friščić T
    Nat Protoc; 2013 Sep; 8(9):1718-29. PubMed ID: 23949378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology-tuned wurtzite-type ZnS nanobelts.
    Wang Z; Daemen LL; Zhao Y; Zha CS; Downs RT; Wang X; Wang ZL; Hemley RJ
    Nat Mater; 2005 Dec; 4(12):922-7. PubMed ID: 16284620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpy
    Užarević K; Ferdelji N; Mrla T; Julien PA; Halasz B; Friščić T; Halasz I
    Chem Sci; 2018 Mar; 9(9):2525-2532. PubMed ID: 29732130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a Mechanically Induced Self-Sustaining Reaction.
    Avilés MA; Córdoba JM; Sayagués MJ; Gotor FJ
    Inorg Chem; 2019 Feb; 58(4):2565-2575. PubMed ID: 30694058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Investigations of Mechanochemical One-Pot Syntheses.
    Kulla H; Haferkamp S; Akhmetova I; Röllig M; Maierhofer C; Rademann K; Emmerling F
    Angew Chem Int Ed Engl; 2018 May; 57(20):5930-5933. PubMed ID: 29605971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent phase transformation kinetics in nanocrystalline ZnS.
    Huang F; Banfield JF
    J Am Chem Soc; 2005 Mar; 127(12):4523-9. PubMed ID: 15783236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenging the Ostwald rule of stages in mechanochemical cocrystallisation.
    Germann LS; Arhangelskis M; Etter M; Dinnebier RE; Friščić T
    Chem Sci; 2020 Aug; 11(37):10092-10100. PubMed ID: 34094270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach.
    Biswas S; Kar S
    Nanotechnology; 2008 Jan; 19(4):045710. PubMed ID: 21817527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework.
    Katsenis AD; Puškarić A; Štrukil V; Mottillo C; Julien PA; Užarević K; Pham MH; Do TO; Kimber SA; Lazić P; Magdysyuk O; Dinnebier RE; Halasz I; Friščić T
    Nat Commun; 2015 Mar; 6():6662. PubMed ID: 25798542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and high-pressure transformation of metastable wurtzite-structured CuGaS2 nanocrystals.
    Xiao N; Zhu L; Wang K; Dai Q; Wang Y; Li S; Sui Y; Ma Y; Liu J; Liu B; Zou G; Zou B
    Nanoscale; 2012 Dec; 4(23):7443-7. PubMed ID: 23086438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation of Zn in blast furnace sludge from former sedimentation ponds using synchrotron X-ray diffraction, fluorescence, and absorption spectroscopy.
    Kretzschmar R; Mansfeldt T; Mandaliev PN; Barmettler K; Marcus MA; Voegelin A
    Environ Sci Technol; 2012 Nov; 46(22):12381-90. PubMed ID: 23035937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Optical Characterization of Oxygen-Incorporated ZnS
    Lin MH; Ho CH
    ACS Omega; 2017 Aug; 2(8):4514-4523. PubMed ID: 31457744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate extrinsic and intrinsic peak broadening modelling for time-resolved
    Mazzeo PP; Lampronti GI; Michalchuk AAL; Belenguer AM; Bacchi A; Emmerling F
    Faraday Discuss; 2023 Jan; 241(0):289-305. PubMed ID: 36173263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.