These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34062029)

  • 1. The challenge and promise of estimating the de novo mutation rate from whole-genome comparisons among closely related individuals.
    Yoder AD; Tiley GP
    Mol Ecol; 2021 Dec; 30(23):6087-6100. PubMed ID: 34062029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct estimate of the rate of germline mutation in a bird.
    Smeds L; Qvarnström A; Ellegren H
    Genome Res; 2016 Sep; 26(9):1211-8. PubMed ID: 27412854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct estimation of de novo mutation rates in a chimpanzee parent-offspring trio by ultra-deep whole genome sequencing.
    Tatsumoto S; Go Y; Fukuta K; Noguchi H; Hayakawa T; Tomonaga M; Hirai H; Matsuzawa T; Agata K; Fujiyama A
    Sci Rep; 2017 Nov; 7(1):13561. PubMed ID: 29093469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tempo and mode of genomic mutations unveil human evolutionary history.
    Hara Y
    Genes Genet Syst; 2015; 90(3):123-31. PubMed ID: 26510567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants.
    Gundry M; Vijg J
    Mutat Res; 2012 Jan; 729(1-2):1-15. PubMed ID: 22016070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint variant and de novo mutation identification on pedigrees from high-throughput sequencing data.
    Cleary JG; Braithwaite R; Gaastra K; Hilbush BS; Inglis S; Irvine SA; Jackson A; Littin R; Nohzadeh-Malakshah S; Rathod M; Ware D; Trigg L; De La Vega FM
    J Comput Biol; 2014 Jun; 21(6):405-19. PubMed ID: 24874280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A family-based probabilistic method for capturing de novo mutations from high-throughput short-read sequencing data.
    Cartwright RA; Hussin J; Keebler JE; Stone EA; Awadalla P
    Stat Appl Genet Mol Biol; 2012 Jan; 11(2):. PubMed ID: 22499693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate.
    Feng C; Pettersson M; Lamichhaney S; Rubin CJ; Rafati N; Casini M; Folkvord A; Andersson L
    Elife; 2017 Jun; 6():. PubMed ID: 28665273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproductive Longevity Predicts Mutation Rates in Primates.
    Thomas GWC; Wang RJ; Puri A; Harris RA; Raveendran M; Hughes DST; Murali SC; Williams LE; Doddapaneni H; Muzny DM; Gibbs RA; Abee CR; Galinski MR; Worley KC; Rogers J; Radivojac P; Hahn MW
    Curr Biol; 2018 Oct; 28(19):3193-3197.e5. PubMed ID: 30270182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the Evolutionary History of Pigs via De Novo Mutation Rate Estimation in A Three-generation Pedigree.
    Zhang M; Yang Q; Ai H; Huang L
    Genomics Proteomics Bioinformatics; 2022 Dec; 20(6):1040-1052. PubMed ID: 35181533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur.
    Campbell CR; Tiley GP; Poelstra JW; Hunnicutt KE; Larsen PA; Lee HJ; Thorne JL; Dos Reis M; Yoder AD
    Heredity (Edinb); 2021 Aug; 127(2):233-244. PubMed ID: 34272504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Old Trade, New Tricks: Insights into the Spontaneous Mutation Process from the Partnering of Classical Mutation Accumulation Experiments with High-Throughput Genomic Approaches.
    Katju V; Bergthorsson U
    Genome Biol Evol; 2019 Jan; 11(1):136-165. PubMed ID: 30476040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates.
    Bergeron LA; Besenbacher S; Turner T; Versoza CJ; Wang RJ; Price AL; Armstrong E; Riera M; Carlson J; Chen HY; Hahn MW; Harris K; Kleppe AS; López-Nandam EH; Moorjani P; Pfeifer SP; Tiley GP; Yoder AD; Zhang G; Schierup MH
    Elife; 2022 Jan; 11():. PubMed ID: 35018888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy to identify de novo mutations in common disorders such as autism and schizophrenia.
    Julie G; Hamdan FF; Rouleau GA
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21712793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of mutation rate variation in the human germline.
    Ségurel L; Wyman MJ; Przeworski M
    Annu Rev Genomics Hum Genet; 2014; 15():47-70. PubMed ID: 25000986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep sequencing of natural and experimental populations of
    Assaf ZJ; Tilk S; Park J; Siegal ML; Petrov DA
    Genome Res; 2017 Dec; 27(12):1988-2000. PubMed ID: 29079675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of Site-Specific and Male-Biased Germline Mutation Rate in a Wild Songbird.
    Zhang H; Lundberg M; Tarka M; Hasselquist D; Hansson B
    Genome Biol Evol; 2023 Nov; 15(11):. PubMed ID: 37793164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parental influence on human germline de novo mutations in 1,548 trios from Iceland.
    Jónsson H; Sulem P; Kehr B; Kristmundsdottir S; Zink F; Hjartarson E; Hardarson MT; Hjorleifsson KE; Eggertsson HP; Gudjonsson SA; Ward LD; Arnadottir GA; Helgason EA; Helgason H; Gylfason A; Jonasdottir A; Jonasdottir A; Rafnar T; Frigge M; Stacey SN; Th Magnusson O; Thorsteinsdottir U; Masson G; Kong A; Halldorsson BV; Helgason A; Gudbjartsson DF; Stefansson K
    Nature; 2017 Sep; 549(7673):519-522. PubMed ID: 28959963
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.