These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34062104)

  • 1. Model building and assessment of the impact of covariates for disease prevalence mapping in low-resource settings: to explain and to predict.
    Giorgi E; Fronterrè C; Macharia PM; Alegana VA; Snow RW; Diggle PJ
    J R Soc Interface; 2021 Jun; 18(179):20210104. PubMed ID: 34062104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maplaria: a user friendly web-application for spatio-temporal malaria prevalence mapping.
    Giorgi E; Macharia PM; Woodmansey J; Snow RW; Rowlingson B
    Malar J; 2021 Dec; 20(1):471. PubMed ID: 34930265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of new computational methods for spatial modelling of malaria.
    Wong S; Flegg JA; Golding N; Kandanaarachchi S
    Malar J; 2023 Nov; 22(1):356. PubMed ID: 37990242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining school-catchment area models with geostatistical models for analysing school survey data from low-resource settings: Inferential benefits and limitations.
    Macharia PM; Ray N; Gitonga CW; Snow RW; Giorgi E
    Spat Stat; 2022 Oct; 51():100679. PubMed ID: 35880005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geostatistical Methods for Disease Mapping and Visualisation Using Data from Spatio-temporally Referenced Prevalence Surveys.
    Giorgi E; Diggle PJ; Snow RW; Noor AM
    Int Stat Rev; 2018 Dec; 86(3):571-597. PubMed ID: 33184527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping malaria risk in Bangladesh using Bayesian geostatistical models.
    Reid H; Haque U; Clements AC; Tatem AJ; Vallely A; Ahmed SM; Islam A; Haque R
    Am J Trop Med Hyg; 2010 Oct; 83(4):861-7. PubMed ID: 20889880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical methodological issues in mapping historical schistosomiasis survey data.
    Chammartin F; Hürlimann E; Raso G; N'Goran EK; Utzinger J; Vounatsou P
    Acta Trop; 2013 Nov; 128(2):345-52. PubMed ID: 23648217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially explicit burden estimates of malaria in Tanzania: bayesian geostatistical modeling of the malaria indicator survey data.
    Gosoniu L; Msengwa A; Lengeler C; Vounatsou P
    PLoS One; 2012; 7(5):e23966. PubMed ID: 22649486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A geostatistical framework for combining spatially referenced disease prevalence data from multiple diagnostics.
    Amoah B; Diggle PJ; Giorgi E
    Biometrics; 2020 Mar; 76(1):158-170. PubMed ID: 31449327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating malaria burden in Nigeria: a geostatistical modelling approach.
    Onyiri N
    Geospat Health; 2015 Nov; 10(2):306. PubMed ID: 26618305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spatial statistical approach to malaria mapping.
    Kleinschmidt I; Bagayoko M; Clarke GP; Craig M; Le Sueur D
    Int J Epidemiol; 2000 Apr; 29(2):355-61. PubMed ID: 10817136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS).
    Riedel N; Vounatsou P; Miller JM; Gosoniu L; Chizema-Kawesha E; Mukonka V; Steketee RW
    Malar J; 2010 Feb; 9():37. PubMed ID: 20122148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the source of domestic water associated with the risk of malaria infection? Spatial variability and a mixed-effects multilevel analysis.
    Shayo FK; Nakamura K; Al-Sobaihi S; Seino K
    Int J Infect Dis; 2021 Mar; 104():224-231. PubMed ID: 33359948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and spatio-temporal methods for mapping malaria risk: a systematic review.
    Odhiambo JN; Kalinda C; Macharia PM; Snow RW; Sartorius B
    BMJ Glob Health; 2020 Oct; 5(10):. PubMed ID: 33023880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana.
    Yankson R; Anto EA; Chipeta MG
    Malar J; 2019 Mar; 18(1):67. PubMed ID: 30871551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot spot or not: a comparison of spatial statistical methods to predict prospective malaria infections.
    Mosha JF; Sturrock HJ; Greenwood B; Sutherland CJ; Gadalla NB; Atwal S; Hemelaar S; Brown JM; Drakeley C; Kibiki G; Bousema T; Chandramohan D; Gosling RD
    Malar J; 2014 Feb; 13():53. PubMed ID: 24517452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geostatistical modelling of the association between malaria and child growth in Africa.
    Amoah B; Giorgi E; Heyes DJ; van Burren S; Diggle PJ
    Int J Health Geogr; 2018 Feb; 17(1):7. PubMed ID: 29482559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution niche models of malaria vectors in northern Tanzania: a new capacity to predict malaria risk?
    Kulkarni MA; Desrochers RE; Kerr JT
    PLoS One; 2010 Feb; 5(2):e9396. PubMed ID: 20195366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The risks of malaria infection in Kenya in 2009.
    Noor AM; Gething PW; Alegana VA; Patil AP; Hay SI; Muchiri E; Juma E; Snow RW
    BMC Infect Dis; 2009 Nov; 9():180. PubMed ID: 19930552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping intra-urban malaria risk using high resolution satellite imagery: a case study of Dar es Salaam.
    Kabaria CW; Molteni F; Mandike R; Chacky F; Noor AM; Snow RW; Linard C
    Int J Health Geogr; 2016 Jul; 15(1):26. PubMed ID: 27473186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.