BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34062460)

  • 1. Identification of adducts formed between acrolein and alanine or serine in fried potato crisps and the cytotoxicity-lowering effect of acrolein in three cell lines.
    Zou Z; Yin Z; Ou J; Zheng J; Liu F; Huang C; Ou S
    Food Chem; 2021 Nov; 361():130164. PubMed ID: 34062460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of di-cysteine acrolein adduct decreases cytotoxicity of acrolein by ROS alleviation and apoptosis intervention.
    Yin Z; Jiang K; Shi L; Fei J; Zheng J; Ou S; Ou J
    J Hazard Mater; 2020 Apr; 387():121686. PubMed ID: 31780296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The scavenging capacity of γ-aminobutyric acid for acrolein and the cytotoxicity of the formed adduct.
    Jiang K; Yin Z; Zhou P; Guo H; Huang C; Zhang G; Hu W; Ou S; Ou J
    Food Funct; 2020 Sep; 11(9):7736-7747. PubMed ID: 32793937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling of mercapturic acids of acrolein and acrylamide in human urine after consumption of potato crisps.
    Watzek N; Scherbl D; Feld J; Berger F; Doroshyenko O; Fuhr U; Tomalik-Scharte D; Baum M; Eisenbrand G; Richling E
    Mol Nutr Food Res; 2012 Dec; 56(12):1825-37. PubMed ID: 23109489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a Hydroxymethylfurfural-Cysteine Adduct and Its Absorption and Cytotoxicity in Caco-2 Cells.
    Zhao Q; Zou Y; Huang C; Lan P; Zheng J; Ou S
    J Agric Food Chem; 2017 Nov; 65(45):9902-9908. PubMed ID: 29058904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of acrolein adducts with 2'-deoxyadenosine in calf thymus DNA.
    Pawłowicz AJ; Munter T; Zhao Y; Kronberg L
    Chem Res Toxicol; 2006 Apr; 19(4):571-6. PubMed ID: 16608169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.
    Noya Y; Seki K; Asano H; Mai Y; Horinouchi T; Higashi T; Terada K; Hatate C; Hoshi A; Nepal P; Horiguchi M; Kuge Y; Miwa S
    Toxicology; 2013 Dec; 314(1):1-10. PubMed ID: 23981515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of metabolites of cyclophosphamide in cardiotoxicity.
    Kurauchi K; Nishikawa T; Miyahara E; Okamoto Y; Kawano Y
    BMC Res Notes; 2017 Aug; 10(1):406. PubMed ID: 28807058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity of a Novel Compound Produced in Foods via the Reaction of Amino Acids with Acrolein along with Formaldehyde.
    Ou J; Hu J; Ou S
    J Agric Food Chem; 2022 Dec; 70(49):15583-15592. PubMed ID: 36459411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Acrylamide content in potato crisps in Poland].
    Mojska H; Gielecińska I; Szponar L; Chajewska K
    Rocz Panstw Zakl Hig; 2006; 57(3):243-9. PubMed ID: 17193744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of adducts formed in reactions of acrolein with thymidine and calf thymus DNA.
    Pawłowicz AJ; Kronberg L
    Chem Biodivers; 2008 Jan; 5(1):177-88. PubMed ID: 18205121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress.
    Luo J; Robinson JP; Shi R
    Neurochem Int; 2005 Dec; 47(7):449-57. PubMed ID: 16140421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(τ)-(3-propanal)histidine as the major adduct.
    Maeshima T; Honda K; Chikazawa M; Shibata T; Kawai Y; Akagawa M; Uchida K
    Chem Res Toxicol; 2012 Jul; 25(7):1384-92. PubMed ID: 22716039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective ways of decreasing acrylamide content in potato crisps during processing.
    Kita A; Bråthen E; Knutsen SH; Wicklund T
    J Agric Food Chem; 2004 Nov; 52(23):7011-6. PubMed ID: 15537311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells.
    Li L; Jiang L; Geng C; Cao J; Zhong L
    Free Radic Res; 2008 Apr; 42(4):354-61. PubMed ID: 18404534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of acrolein metabolites in human buccal cells, blood, and urine after consumption of commercial fried food.
    Wang TW; Liu JH; Tsou HH; Liu TY; Wang HT
    Food Sci Nutr; 2019 May; 7(5):1668-1676. PubMed ID: 31139379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hesperetin mitigates acrolein-induced apoptosis in lung cells in vitro and in vivo.
    Park JH; Ku HJ; Park JW
    Redox Rep; 2018 Dec; 23(1):188-193. PubMed ID: 30325253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of potato crisp effective porosity using micro-CT.
    Renshaw RC; Robinson JP; Dimitrakis GA; Bows JR; Kingman SW
    J Sci Food Agric; 2016 Oct; 96(13):4440-8. PubMed ID: 26841248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.
    Pan J; Sinclair E; Xuan Z; Dyba M; Fu Y; Sen S; Berry D; Creswell K; Hu J; Roy R; Chung FL
    Mutat Res; 2016 Jul; 789():33-8. PubMed ID: 27036235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicology and risk assessment of acrolein in food.
    Abraham K; Andres S; Palavinskas R; Berg K; Appel KE; Lampen A
    Mol Nutr Food Res; 2011 Sep; 55(9):1277-90. PubMed ID: 21898908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.