These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34062825)

  • 1. The Effects of Random Porosities in Resonant Frequencies of Graphene Based on the Monte Carlo Stochastic Finite Element Model.
    Chu L; Shi J; Yu Y; Souza De Cursi E
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibration Analysis of Vacancy Defected Graphene Sheets by Monte Carlo Based Finite Element Method.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30004459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method.
    Chu L; Shi J; Ben S
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fingerprints of Resonant Frequency for Atomic Vacancy Defect Identification in Graphene.
    Chu L; Shi J; Souza de Cursi E
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Uncertainty Propagation for Carbon Atomic Interactions in Graphene under Resonant Vibration Based on Stochastic Finite Element Model.
    Shi J; Chu L; Ma C; Braun R
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The correlation between graphene characteristic parameters and resonant frequencies by Monte Carlo based stochastic finite element model.
    Chu L; Shi J; de Cursi ES
    Sci Rep; 2021 Nov; 11(1):22962. PubMed ID: 34824351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoresonator vibrational behaviour analysis of single- and double-layer graphene with atomic vacancy and pinhole defects.
    Makwana M; Patel AM
    J Mol Model; 2023 Apr; 29(5):149. PubMed ID: 37074494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Kriging Surrogate Model for Uncertainty Analysis of Graphene Based on a Finite Element Method.
    Shi J; Chu L; Braun R
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31085983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Conductivity of Defective Graphene Oxide: A Molecular Dynamic Study.
    Yang Y; Cao J; Wei N; Meng D; Wang L; Ren G; Yan R; Zhang N
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30897783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.
    Mortazavi B; Pötschke M; Cuniberti G
    Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Analysis of Graphene Nanoelectromechanical Resonators Based on Vacancy Defects.
    Li W; Tian W
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetism and Interaction-Induced Gap Opening in Graphene with Vacancies or Hydrogen Adatoms: Quantum Monte Carlo Study.
    Ulybyshev MV; Katsnelson MI
    Phys Rev Lett; 2015 Jun; 114(24):246801. PubMed ID: 26196994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinction in binding of peptides (P2E) and its mutations (P2G, P2Q) to a graphene sheet via a hierarchical coarse-grained Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2013 Oct; 139(16):164901. PubMed ID: 24182073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermopower and conductance for a graphene p-n junction.
    Lv SH; Feng SB; Li YX
    J Phys Condens Matter; 2012 Apr; 24(14):145801. PubMed ID: 22410842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Transport of Graphene Sheets with Fractal Defects.
    Kang Y; Duan F; Shangguan S; Zhang Y; Zhou T; Si B
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous size dependence of the thermal conductivity of graphene ribbons.
    Nika DL; Askerov AS; Balandin AA
    Nano Lett; 2012 Jun; 12(6):3238-44. PubMed ID: 22612247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transport of recrystallized freestanding graphene nanoribbons.
    Qi ZJ; Daniels C; Hong SJ; Park YW; Meunier V; Drndić M; Johnson AT
    ACS Nano; 2015; 9(4):3510-20. PubMed ID: 25738404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene.
    Jung GS; Yeo J; Tian Z; Qin Z; Buehler MJ
    Nanoscale; 2017 Sep; 9(36):13477-13484. PubMed ID: 28861576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.