BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 34062860)

  • 1. Vacuum and Infrared-Assisted Hot Air Impingement Drying for Improving the Processing Performance and Quality of
    Zhang W; Chen C; Pan Z; Zheng Z
    Foods; 2021 May; 10(5):. PubMed ID: 34062860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of hot air and vacuum drying on the drying kinetics and physicochemical properties of chicory roots.
    Balzarini MF; Reinheimer MA; Ciappini MC; Scenna NJ
    J Food Sci Technol; 2018 Oct; 55(10):4067-4078. PubMed ID: 30228405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions.
    Chayjan RA; Fealekari M
    Acta Sci Pol Technol Aliment; 2017; 16(2):157-170. PubMed ID: 28703956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves.
    Lemus-Mondaca R; Zura-Bravo L; Ah-Hen K; Di Scala K
    J Sci Food Agric; 2021 Dec; 101(15):6484-6495. PubMed ID: 34000065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drying sea buckthorn berries (
    Geng Z; Zhu L; Wang J; Yu X; Li M; Yang W; Hu B; Zhang Q; Yang X
    Front Nutr; 2023; 10():1106009. PubMed ID: 36845045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic, osmovacuum, sonication, and osmosonication pretreatment on the infrared drying of Ginkgo seed slices: Mass transfer, mathematical modeling, drying, and rehydration kinetics and energy consumption.
    Boateng ID; Yang XM
    J Food Sci; 2021 Oct; 86(10):4577-4593. PubMed ID: 34549439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed Vacuum Drying of Pepper (
    Geng Z; Huang X; Wang J; Xiao H; Yang X; Zhu L; Qi X; Zhang Q; Hu B
    Foods; 2022 Jan; 11(3):. PubMed ID: 35159468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intermittent CO
    Chakraborty R; Mondal P
    J Sci Food Agric; 2017 Aug; 97(11):3822-3830. PubMed ID: 28150427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying.
    Cao X; Zhang M; Qian H; Mujumdar AS
    J Sci Food Agric; 2017 Jun; 97(8):2307-2315. PubMed ID: 27629699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of blanching pretreatment and microwave-vacuum drying on drying kinetics and physicochemical properties of purple-fleshed sweet potato.
    Marzuki SU; Pranoto Y; Khumsap T; Nguyen LT
    J Food Sci Technol; 2021 Aug; 58(8):2884-2895. PubMed ID: 34294950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the Thin-Layer Drying Kinetics of Marinated Beef during Infrared-Assisted Hot Air Processing of Biltong.
    Muga FC; Marenya MO; Workneh TS
    Int J Food Sci; 2021; 2021():8819780. PubMed ID: 33628771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Neural Network Assisted Multiobjective Optimization of Postharvest Blanching and Drying of Blueberries.
    Zhang W; Wang K; Chen C
    Foods; 2022 Oct; 11(21):. PubMed ID: 36359960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Heat and Mass Transfer Associated with Kinetics Models for Analyzing Convective Stepwise Drying of Carrot Cubes.
    Chupawa P; Suksamran W; Jaisut D; Ronsse F; Duangkhamchan W
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.
    Kumar D; Prasad S; Murthy GS
    J Food Sci Technol; 2014 Feb; 51(2):221-32. PubMed ID: 24493879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drying kinetics and physicochemical properties of kumquat under hot air and air-impingement jet dryings.
    Tan S; Wang Y; Fu W; Luo Y; Cheng S; Li W
    Food Sci Biotechnol; 2022 Jun; 31(6):711-719. PubMed ID: 35646408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study.
    Cao ZZ; Zhou LY; Bi JF; Yi JY; Chen QQ; Wu XY; Zheng JK; Li SR
    J Sci Food Agric; 2016 Aug; 96(10):3596-603. PubMed ID: 26612038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).
    Šumić Z; Vakula A; Tepić A; Čakarević J; Vitas J; Pavlić B
    Food Chem; 2016 Jul; 203():465-475. PubMed ID: 26948639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High pressure-assisted vacuum-freeze drying: A novel, efficient way to accelerate moisture migration in shrimp processing.
    Ling JG; Xuan XT; Yu N; Cui Y; Shang HT; Liao XJ; Lin XD; Yu JF; Liu DH
    J Food Sci; 2020 Apr; 85(4):1167-1176. PubMed ID: 32275070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Different Drying Methods on the Quality and Nonvolatile Flavor Components of
    Shen Q; He Z; Ding Y; Sun L
    Foods; 2023 Feb; 12(3):. PubMed ID: 36766204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.