These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 34062885)
1. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material Combined with Hyaluronic Acid. Pröhl A; Batinic M; Alkildani S; Hahn M; Radenkovic M; Najman S; Jung O; Barbeck M Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062885 [TBL] [Abstract][Full Text] [Related]
2. In Vivo Analysis of the Regeneration Capacity and Immune Response to Xenogeneic and Synthetic Bone Substitute Materials. Bielenstein J; Radenković M; Najman S; Liu L; Ren Y; Cai B; Beuer F; Rimashevskiy D; Schnettler R; Alkildani S; Jung O; Schmidt F; Barbeck M Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142541 [TBL] [Abstract][Full Text] [Related]
3. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration. Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Material-mediated Bone Regeneration Capacities of Sintered and Non-sintered Xenogeneic Bone Substitutes Kapogianni E; Barbeck M; Jung O; Arslan A; Kuhnel L; Xiong X; Krastev R; Friedrich RE; Schnettler R; Fienitz T; Rothamel D In Vivo; 2019; 33(6):2169-2179. PubMed ID: 31662553 [TBL] [Abstract][Full Text] [Related]
5. Biofunctionalization of synthetic bone substitutes with angiogenic stem cells: Influence on regeneration of critical-size bone defects in an in vivo murine model. Beger B; Blatt S; Pabst AM; Hansen T; Goetz H; Al-Nawas B; Ziebart T J Craniomaxillofac Surg; 2018 Sep; 46(9):1601-1608. PubMed ID: 30196861 [TBL] [Abstract][Full Text] [Related]
6. CSBD Healing in Rats after Application of Bovine Xenogeneic Biomaterial Enriched with Magnesium Alloy. Jerbić Radetić AT; Zoričić Cvek S; Tomas M; Erjavec I; Oguić M; Perić Kačarević Ž; Cvijanović Peloza O Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445794 [TBL] [Abstract][Full Text] [Related]
7. The Addition of High Doses of Hyaluronic Acid to a Biphasic Bone Substitute Decreases the Proinflammatory Tissue Response. Sieger D; Korzinskas T; Jung O; Stojanovic S; Wenisch S; Smeets R; Gosau M; Schnettler R; Najman S; Barbeck M Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013636 [TBL] [Abstract][Full Text] [Related]
8. An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Ghanaati S; Barbeck M; Hilbig U; Hoffmann C; Unger RE; Sader RA; Peters F; Kirkpatrick CJ Acta Biomater; 2011 Nov; 7(11):4018-28. PubMed ID: 21784183 [TBL] [Abstract][Full Text] [Related]
9. Physical characterization of biphasic bioceramic materials with different granulation sizes and their influence on bone repair and inflammation in rat calvaria. de Oliveira Junior JM; Montagner PG; Carrijo RC; Martinez EF Sci Rep; 2021 Feb; 11(1):4484. PubMed ID: 33627770 [TBL] [Abstract][Full Text] [Related]
10. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study. Dau M; Kämmerer PW; Henkel KO; Gerber T; Frerich B; Gundlach KK Clin Oral Implants Res; 2016 May; 27(5):597-603. PubMed ID: 26039281 [TBL] [Abstract][Full Text] [Related]
11. Improved new bone formation capacity of hyaluronic acid-bone substitute compound in rat calvarial critical size defect. Zhao N; Qin L; Liu Y; Zhai M; Li D BMC Oral Health; 2024 Aug; 24(1):994. PubMed ID: 39182066 [TBL] [Abstract][Full Text] [Related]
12. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and its Suitability for Bone Regeneration. Flaig I; Radenković M; Najman S; Pröhl A; Jung O; Barbeck M Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32630456 [TBL] [Abstract][Full Text] [Related]
13. Histomorphometric Study of New Bone Formation Comparing Defect Healing with Three Bone Grafting Materials: The Effect of Osteoporosis on Graft Consolidation. Zhang Q; Jing D; Zhang Y; Miron RJ Int J Oral Maxillofac Implants; 2018; 33(3):645–652. PubMed ID: 29420674 [TBL] [Abstract][Full Text] [Related]
14. Improving material properties of a poloxamer P407 hydrogel-based hydroxyapatite bone substitute material by adding silica-A comparative in vivo study. Kämmerer PW; Heimes D; Zaage F; Ganz C; Frerich B; Gerber T; Dau M J Biomed Mater Res B Appl Biomater; 2024 May; 112(5):e35405. PubMed ID: 38701384 [TBL] [Abstract][Full Text] [Related]
15. Bone repair access of BoneCeramic™ in 5-mm defects: study on rat calvaria. Fabris ALDS; Faverani LP; Gomes-Ferreira PHS; Polo TOB; Santiago-Júnior JF; Okamoto R J Appl Oral Sci; 2018 Jan; 26():e20160531. PubMed ID: 29340480 [TBL] [Abstract][Full Text] [Related]
16. The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. Saulacic N; Fujioka-Kobayashi M; Kimura Y; Bracher AI; Zihlmann C; Lang NP J Mater Sci Mater Med; 2021 Jan; 32(1):14. PubMed ID: 33475862 [TBL] [Abstract][Full Text] [Related]
17. Defect healing with various bone substitutes. Yip I; Ma L; Mattheos N; Dard M; Lang NP Clin Oral Implants Res; 2015 May; 26(5):606-14. PubMed ID: 24702244 [TBL] [Abstract][Full Text] [Related]
18. To what extent does hyaluronic acid affect healing of xenografts? A histomorphometric study in a rabbit model. Arpağ OF; Damlar I; Altan A; Tatli U; Günay A J Appl Oral Sci; 2018 Jan; 26():e20170004. PubMed ID: 29364337 [TBL] [Abstract][Full Text] [Related]
19. Implantation of an Injectable Bone Substitute Material Enables Integration Following the Principles of Guided Bone Regeneration. Barbeck M; Jung O; Smeets R; Gosau M; Schnettler R; Rider P; Houshmand A; Korzinskas T In Vivo; 2020; 34(2):557-568. PubMed ID: 32111754 [TBL] [Abstract][Full Text] [Related]
20. [COMPARATIVE MORPHOLOGICAL STUDY OF GUIDED BONE TISSUE REGENERATION USING XENOGENIC OSTEOPLASTIC MATERIAL BIOPLAST-DENT AND CERABONE]. Chernenko V; Lyubchenko A Georgian Med News; 2018 May; (278):151-158. PubMed ID: 29905562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]