BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 34063156)

  • 1. Ethylene and Nitric Oxide Involvement in the Regulation of Fe and P Deficiency Responses in Dicotyledonous Plants.
    García MJ; Lucena C; Romera FJ
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies.
    García MJ; Romera FJ; Lucena C; Alcántara E; Pérez-Vicente R
    Plant Physiol; 2015 Sep; 169(1):51-60. PubMed ID: 26175512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants.
    Romera FJ; García MJ; Lucena C; Angulo M; Pérez-Vicente R
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene and Phloem Signals Are Involved in the Regulation of Responses to Fe and P Deficiencies in Roots of Strategy I Plants.
    Lucena C; Porras R; García MJ; Alcántara E; Pérez-Vicente R; Zamarreño ÁM; Bacaicoa E; García-Mina JM; Smith AP; Romera FJ
    Front Plant Sci; 2019; 10():1237. PubMed ID: 31649701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latest findings about the interplay of auxin, ethylene and nitric oxide in the regulation of Fe deficiency responses by Strategy I plants.
    Romera FJ; García MJ; Alcántara E; Pérez-Vicente R
    Plant Signal Behav; 2011 Jan; 6(1):167-70. PubMed ID: 21248474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Ethylene Signaling in the Crosstalk Between Fe, S, and P Deficiency Responses in
    García MJ; Angulo M; García C; Lucena C; Alcántara E; Pérez-Vicente R; Romera FJ
    Front Plant Sci; 2021; 12():643585. PubMed ID: 33859661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants.
    García MJ; Suárez V; Romera FJ; Alcántara E; Pérez-Vicente R
    Plant Physiol Biochem; 2011 May; 49(5):537-44. PubMed ID: 21316254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Study of Several Fe Deficiency Responses in the
    Angulo M; García MJ; Alcántara E; Pérez-Vicente R; Romera FJ
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33573082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A shoot derived long distance iron signal may act upstream of the IMA peptides in the regulation of Fe deficiency responses in
    García MJ; Angulo M; Romera FJ; Lucena C; Pérez-Vicente R
    Front Plant Sci; 2022; 13():971773. PubMed ID: 36105702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice.
    Lucena C; Romera FJ; García MJ; Alcántara E; Pérez-Vicente R
    Front Plant Sci; 2015; 6():1056. PubMed ID: 26640474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current understanding on ethylene signaling in plants: the influence of nutrient availability.
    Iqbal N; Trivellini A; Masood A; Ferrante A; Khan NA
    Plant Physiol Biochem; 2013 Dec; 73():128-38. PubMed ID: 24095919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-Nitrosoglutathione works downstream of nitric oxide to mediate iron-deficiency signaling in Arabidopsis.
    Kailasam S; Wang Y; Lo JC; Chang HF; Yeh KC
    Plant J; 2018 Apr; 94(1):157-168. PubMed ID: 29396986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis.
    García MJ; Lucena C; Romera FJ; Alcántara E; Pérez-Vicente R
    J Exp Bot; 2010 Sep; 61(14):3885-99. PubMed ID: 20627899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in
    García MJ; Corpas FJ; Lucena C; Alcántara E; Pérez-Vicente R; Zamarreño ÁM; Bacaicoa E; García-Mina JM; Bauer P; Romera FJ
    Front Plant Sci; 2018; 9():1325. PubMed ID: 30254659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato.
    Jin CW; Du ST; Chen WW; Li GX; Zhang YS; Zheng SJ
    Plant Physiol; 2009 May; 150(1):272-80. PubMed ID: 19329565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus).
    Meng ZB; Chen LQ; Suo D; Li GX; Tang CX; Zheng SJ
    Ann Bot; 2012 May; 109(6):1055-64. PubMed ID: 22351487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis.
    Shanmugam V; Wang YW; Tsednee M; Karunakaran K; Yeh KC
    Plant J; 2015 Nov; 84(3):464-77. PubMed ID: 26333047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis.
    Zhai L; Xiao D; Sun C; Wu T; Han Z; Zhang X; Xu X; Wang Y
    Plant Physiol Biochem; 2016 Dec; 109():515-524. PubMed ID: 27835849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots.
    Li W; Lan P
    BMC Res Notes; 2015 Oct; 8():555. PubMed ID: 26459023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.
    Zhou C; Liu Z; Zhu L; Ma Z; Wang J; Zhu J
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27792144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.