These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34063227)

  • 21. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting.
    Wei SH; Zhou QX
    Environ Sci Pollut Res Int; 2006 May; 13(3):151-5. PubMed ID: 16758704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere.
    Hou D; Lin Z; Wang R; Ge J; Wei S; Xie R; Wang H; Wang K; Hu Y; Yang X; Lu L; Tian S
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time kinetics of cadmium transport and transcriptomic analysis in low cadmium accumulator Miscanthus sacchariflorus.
    Guo H; Hong C; Xiao M; Chen X; Chen H; Zheng B; Jiang D
    Planta; 2016 Dec; 244(6):1289-1302. PubMed ID: 27534966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils.
    Wang X; Nie Z; He L; Wang Q; Sheng X
    Sci Total Environ; 2017 Feb; 579():179-189. PubMed ID: 27839757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus.
    Bruno LB; Anbuganesan V; Karthik C; Tripti ; Kumar A; Banu JR; Freitas H; Rajkumar M
    J Environ Manage; 2021 Jul; 289():112553. PubMed ID: 33857710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Malate secretion from the root system is an important reason for higher resistance of Miscanthus sacchariflorus to cadmium.
    Guo H; Feng X; Hong C; Chen H; Zeng F; Zheng B; Jiang D
    Physiol Plant; 2017 Mar; 159(3):340-353. PubMed ID: 27787914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L.).
    Wei T; Liu X; Dong M; Lv X; Hua L; Jia H; Ren X; Yu S; Guo J; Li Y
    J Environ Manage; 2021 Jan; 278(Pt 2):111533. PubMed ID: 33157466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites.
    Nurzhanova A; Pidlisnyuk V; Abit K; Nurzhanov C; Kenessov B; Stefanovska T; Erickson L
    Environ Sci Pollut Res Int; 2019 May; 26(13):13320-13333. PubMed ID: 30903469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.
    Balseiro-Romero M; Gkorezis P; Kidd PS; Van Hamme J; Weyens N; Monterroso C; Vangronsveld J
    Sci Total Environ; 2017 Mar; 581-582():676-688. PubMed ID: 28069305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing plant-beneficial bacterial encapsulation: A sustainable strategy for facilitating cadmium bioaccumulation in Medicago sativa.
    Ouyang P; Wang Y; Peng X; Shi X; Chen X; Li Z; Ma Y
    J Hazard Mater; 2024 Jul; 476():135232. PubMed ID: 39024768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities.
    Dai Y; Liu R; Zhou Y; Li N; Hou L; Ma Q; Gao B
    Environ Int; 2020 Mar; 136():105421. PubMed ID: 31884414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Furcraea foetida (L.)Haw. for phytoremediation of cadmium contaminated soils.
    Ramana S; Tripathi AK; Kumar A; Dey P; Saha JK; Patra AK
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):14177-14181. PubMed ID: 33491145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation.
    Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H
    J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil.
    Rehman M; Maqbool Z; Peng D; Liu L
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5851-5861. PubMed ID: 30613880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27.
    Yuan M; He H; Xiao L; Zhong T; Liu H; Li S; Deng P; Ye Z; Jing Y
    Chemosphere; 2014 May; 103():99-104. PubMed ID: 24314897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil.
    Rangel WM; Thijs S; Janssen J; Oliveira Longatti SM; Bonaldi DS; Ribeiro PR; Jambon I; Eevers N; Weyens N; Vangronsveld J; Moreira FM
    Int J Phytoremediation; 2017 Feb; 19(2):142-156. PubMed ID: 27409290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root.
    Kartik VP; Jinal HN; Amaresan N
    Int J Phytoremediation; 2016 Nov; 18(11):1061-6. PubMed ID: 27185302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.
    Huang GH; Tian HH; Liu HY; Fan XW; Liang Y; Li YZ
    Int J Phytoremediation; 2013; 15(10):991-1009. PubMed ID: 23819291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.