These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34063256)

  • 1. Low Cycle Fatigue Life Assessment Based on the Accumulated Plastic Strain Energy Density.
    Hu Y; Shi J; Cao X; Zhi J
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34063256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Cycle Fatigue Properties of Sc-Modified AA2519-T62 Extrusion.
    Kosturek R; Śnieżek L; Torzewski J; Wachowski M
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
    Song W; Liu X; Berto F; Razavi SMJ
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Strain Gradient on Fatigue Life of Carbon Steel for Pressure Vessels in Low-Cycle and High-Cycle Fatigue Regimes.
    Fujii T; Muhamad Azmi MSB; Tohgo K; Shimamura Y
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Measurement of Cyclic Plastic Zone and Internal Strain Response of Q&P Steel near Fatigue Crack Tip Region Based on Micro-DIC.
    Gao H; Lin Z; Huang X; Shang H; Zhan J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low Cycle Fatigue Behavior of Plastically Pre-Strained HSLA S355MC and S460MC Steels.
    Prosgolitis CG; Kermanidis AT; Kamoutsi H; Haidemenopoulos GN
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.
    Fintová S; Kunz L
    J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Energy-Based Unified Approach to Predict the Low-Cycle Fatigue Life of Type 316L Stainless Steel under Various Temperatures and Strain-Rates.
    Tak NH; Kim JS; Lim JY
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30986973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure-sensitive critical plastic strain energy density criterion for fatigue life prediction across various loading regimes.
    Bandyopadhyay R; Prithivirajan V; Peralta AD; Sangid MD
    Proc Math Phys Eng Sci; 2020 Apr; 476(2236):20190766. PubMed ID: 32398935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue Life Prediction of a SAE Keyhole Specimen as a Subcase of Certification by Analysis.
    Wu X; Zhang Z; Paraschivoiu D
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters.
    Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monotonic and Fatigue Behavior of EBM Manufactured Ti-6Al-4V Solid Samples: Experimental, Analytical and Numerical Investigations.
    Radlof W; Benz C; Heyer H; Sander M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Cycle Fatigue Behavior of Steam Generator Tubes under Axial Loading.
    He X; Chen J; Tian W; Li Y; Jin W
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the Ultra-Low-Cycle Fatigue Damage of Q345qC Steel and its Weld Joint.
    Tian Q; Zhuge H; Xie X
    Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31816879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Overload Effect on the Crack Tip Damage Mechanism in a 7075 Aluminum Alloy.
    Xie C; Zheng Z; Li L; Sun T
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Microstructure and Axial Tension on Three-Point Bending Fatigue Behavior of TC4 in High Cycle and Very High Cycle Regimes.
    Bao X; Cheng L; Ding J; Chen X; Lu K; Cui W
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Properties of Aluminum Alloys under Low-Cycle Fatigue Loading.
    Zhao X; Li H; Chen T; Cao B; Li X
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.