These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34063319)

  • 1. Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach.
    Jiang X; Tang Y; Liu Z; Raman V
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34063319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 5-D Implementation of FGM for the Large Eddy Simulation of a Stratified Swirled Flame with Heat Loss in a Gas Turbine Combustor.
    Donini A; M Bastiaans RJ; van Oijen JA; H de Goey LP
    Flow Turbul Combust; 2017; 98(3):887-922. PubMed ID: 30174550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Partial Premixing and Heat Loss on the Reacting Flow Field Prediction of a Swirl Stabilized Gas Turbine Model Combustor.
    Gövert S; Mira D; Kok JBW; Vázquez M; Houzeaux G
    Flow Turbul Combust; 2018; 100(2):503-534. PubMed ID: 30069142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Numerical Simulation of Head-On Quenching of Statistically Planar Turbulent Premixed Methane-Air Flames Using a Detailed Chemical Mechanism.
    Lai J; Klein M; Chakraborty N
    Flow Turbul Combust; 2018; 101(4):1073-1091. PubMed ID: 30613187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Finite Rate Chemistry Large Eddy Simulation Combustion Models.
    Fedina E; Fureby C; Bulat G; Meier W
    Flow Turbul Combust; 2017; 99(2):385-409. PubMed ID: 30069155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large eddy simulation for predicting turbulent heat transfer in gas turbines.
    Tafti DK; He L; Nagendra K
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130322. PubMed ID: 25024418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of combustion and thermal performance of a meso-scale combustor under co- and counter-rotating fuel and oxidizer swirling flows for micro power generators.
    Sheykhbaglou S; Ghahremani A; Tabejamaat S; Sánchez-Sanz M
    Heliyon; 2024 Jan; 10(2):e24250. PubMed ID: 38293380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropy Generation during Head-On Interaction of Premixed Flames with Inert Walls within Turbulent Boundary Layers.
    Ghai SK; Ahmed U; Chakraborty N; Klein M
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictions of Conjugate Heat Transfer in Turbulent Channel Flow Using Advanced Wall-Modeled Large Eddy Simulation Techniques.
    Li Y; Ries F; Nishad K; Sadiki A
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Acoustic Excitation on the Combustion Instability of Hydrogen-Methane Lean Premixed Swirling Flames.
    Deng K; Zhong Y; Wang M; Zhong Y; Luo KH
    ACS Omega; 2020 Apr; 5(15):8744-8753. PubMed ID: 32337436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Choice of reaction progress variable under preferential diffusion effects in turbulent syngas combustion based on detailed chemistry direct numerical simulations.
    Wehrmann VS; Chakraborty N; Klein M; Hasslberger J
    Sci Rep; 2024 Jun; 14(1):14861. PubMed ID: 38937515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large eddy simulation modelling of combustion for propulsion applications.
    Fureby C
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2957-69. PubMed ID: 19531515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Study of Ignition and Combustion of Hydrogen-Enriched Methane in a Sequential Combustor.
    Impagnatiello M; Malé Q; Noiray N
    Flow Turbul Combust; 2024; 112(4):1249-1273. PubMed ID: 38646586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dataset providing boundary conditions of an experimental test bench to numerically investigate flame wall interactions using CFD.
    Fischer L; Dalshad R; Breda P; Pfitzner M
    Data Brief; 2022 Dec; 45():108617. PubMed ID: 36426023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Wall Heat Fluxes in a Rocket Engine with Conjugate Heat Transfer Based on Large-Eddy Simulation.
    Potier L; Duchaine F; Cuenot B; Saucereau D; Pichillou J
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LES of Nonlinear Saturation in Forced Turbulent Premixed Flames.
    Lee CY; Cant S
    Flow Turbul Combust; 2017; 99(2):461-486. PubMed ID: 30069156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows.
    Bose ST; Park GI
    Annu Rev Fluid Mech; 2018 Jan; 50():535-561. PubMed ID: 31631915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.
    Xiao H; Sun J; Chen P
    J Hazard Mater; 2014 Mar; 268():132-9. PubMed ID: 24486615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an oxygen-shielded air-acetylene flame to atomic spectroscopy.
    Stephens R
    Talanta; 1973 Aug; 20(8):765-73. PubMed ID: 18961343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of non-premixed turbulent combustion with Conditional Moment Closure (CMC)
    Stanković I
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):150. PubMed ID: 30594953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.